SKM 800GA125D

Ultrafast IGBT Modules

SKM 800GA125D

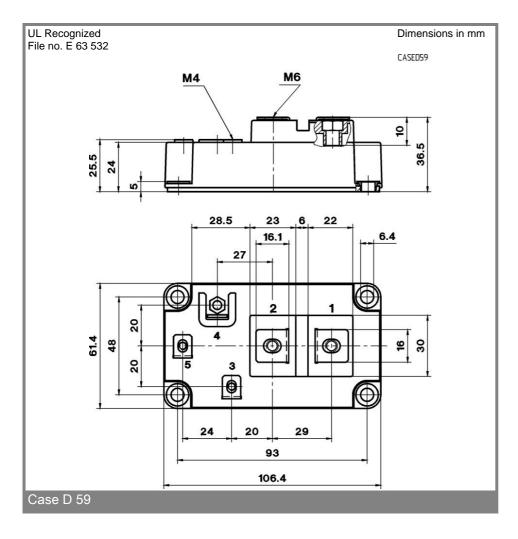
Target Data

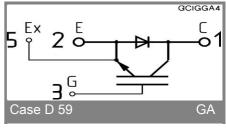
Features

- · Homogeneous Si
- NPT-IGBT
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability, self limiting to 6 x I_C

Typical Applications

- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at fsw > 20 kHz


Remarks


- I_{DC} ≤ 500 A limited by terminals
 Take care of over-voltage caused by stray inductances

Absolute	Maximum Ratings	T _{case} = 25°C, unless otherw	se = 25°C, unless otherwise specified	
Symbol	Conditions	Values	Units	
IGBT				
V_{CES}		1200	V	
I _C	$T_c = 25 (80) ^{\circ}C$ $t_p = 1 \text{ ms}$	760 (530)	Α	
I _{CRM}	$t_{\rm p} = 1 \text{ ms}$	1200	Α	
V_{GES}		± 20	V	
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C	
V _{isol}	AC, 1 min.	4000	V	
Inverse diode				
I _F	$T_c = 25 (80) ^{\circ}C$	720 (500)	Α	
I _{FRM}	$t_p = 1 \text{ ms}$	1200	Α	
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	5000	Α	

	c. Units			
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	mA			
$V_{CE(sat)}$ $I_{Cnom} = 600 \text{ A}, V_{GE} = 15 \text{ V}, \text{ chip level}$ $3,2 (4)$ $3,75 (4,6)$ C_{ies} under following conditions 37				
C _{ies} under following conditions 37	′			
	55) V			
$V_{CS} = 0$, $V_{CS} = 25$ V, $f = 1$ MHz 5.6	nF			
des GE - CE - 7	nF			
C _{res} 2,8	nF			
L _{CE} 20	nH			
$R_{CC'+EE'}$ res., terminal-chip T_c = 25 (125) °C 0,18 (0,22)	mΩ			
$t_{d(on)}$ $V_{CC} = 600 \text{ V}, I_{Cnom} = 600 \text{ A}$	ns			
t_r $R_{Gon} = R_{Goff} = \Omega, T_j = 125 °C$	ns			
$t_{d(off)}$ $V_{GE} \pm 15 V$	ns			
t _f	ns			
E _{on} (E _{off}) 52 (26)	mJ			
Inverse diode				
$V_F = V_{EC}$ $I_{Fnom} = 600 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125)$ 2,3 (2,1) 2,5 (2,1)	3) V			
$V_{(TO)}$ $T_j = 25 (125) °C$ 1,1 (0,9) 1,3 (1,0))5) V			
r_{T} $T_{i} = 25 (125) ^{\circ}C$ 2 (2) 2 (2,1) mΩ			
I_{RRM} $I_{Fnom} = 600 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$	Α			
Q_{rr} di/dt = A/ μ s	μC			
E_{rr} $V_{GE} = 0 V$	mJ			
Thermal characteristics				
R _{th(j-c)} per IGBT 0,03	K/W			
R _{th(j-c)D} per Inverse Diode 0,07	K/W			
R _{th(c-s)} per module 0,038	K/W			
Mechanical data				
M _s to heatsink M6 3 5	Nm			
M _t to terminals (M6(M4) 2,5 (1,1) 5 (2)	Nm			
w 330	g			

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.