Features

* High Performance, Low Power AVR® 8-Bit Microcontroller
¢ Advanced RISC Architecture
— 135 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-Chip 2-cycle Multiplier
* Non-volatile Program and Data Memories
— 64K/128K/256K Bytes of In-System Self-Programmable Flash
Endurance: 10,000 Write/Erase Cycles
— Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
- 4K Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
— 8K Bytes Internal SRAM
— Up to 64K Bytes Optional External Memory Space
— Programming Lock for Software Security
¢ JTAG (IEEE std. 1149.1 compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
— Extensive On-chip Debug Support
— Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
— Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode
— Real Time Counter with Separate Oscillator
— Four 8-bit PWM Channels
— Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits
(ATmega1281/2561, ATmega640/1280/2560)
— Output Compare Modulator
— 8/16-channel, 10-bit ADC (ATmega1281/2561, ATmega640/1280/2560)
— Two/Four Programmable Serial USART (ATmega1281/2561,ATmega640/1280/2560)
— Master/Slave SPI Serial Interface
— Byte Oriented 2-wire Serial Interface
— Programmable Watchdog Timer with Separate On-chip Oscillator
— On-chip Analog Comparator
— Interrupt and Wake-up on Pin Change
¢ Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated Oscillator
— External and Internal Interrupt Sources
— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,
and Extended Standby
* /0 and Packages
— 54/86 Programmable I/O Lines (ATmega1281/2561, ATmega640/1280/2560)
— 64-pad QFN/MLF, 64-lead TQFP (ATmega1281/2561)
— 100-lead TQFP, 100-ball CBGA (ATmega640/1280/2560)
— RoHS/Fully Green
¢ Temperature Range:
— -40°C to 85°C Industrial
¢ Ultra-Low Power Consumption
— Active Mode: 1 MHz, 1.8V: 510 pA
— Power-down Mode: 0.1 pA at 1.8V
¢ Speed Grade (see “Maximum speed vs. VCC” on page 377):
— ATmega640V/ATmegal1280V/ATmega1281V:
0-4MHz @ 1.8-5.5V,0-8 MHz @ 2.7 - 5.5V
— ATmega2560V/ATmega2561V:
0-2MHz @ 1.8-5.5V,0-8 MHz @ 2.7 - 5.5V
— ATmega640/ATmega1280/ATmegal281:
0-8MHz @ 2.7-5.5V,0-16 MHz @ 4.5 - 5.5V
— ATmega2560/ATmega2561:
0-16 MHz @ 4.5 - 5.5V

ATMEL
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Pin Configurations
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Figure 1. TQFP-pinout ATmega640/1280/2560

(OCOB) PG5
(RXDO/PCINT8) PEQ
(TXDO) PE1
(XCKO/AINO) PE2
(OC3A/AINT) PE3
(OC3B/INT4) PE4
(OC3C/INTS) PE5
(T3/INT6) PE6
(CLKO/ICP3/INT7) PE7
vce

GND

(RXD2) PHO

(TXD2) PH1

(XCK2) PH2

(OC4A) PH3
(0C4B) PH4
(0C4C) PH5
(OC2B) PH6
(SS/PCINTO) PBO
(SCK/PCINT1) PB1
(MOSI/PCINT2) PB2
(MISO/PCINT3) PB3
(OC2A/PCINT4) PB4
(OC1A/PCINTS) PB5
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PA3 (AD3)
PA4 (AD4)

PAS (ADS)

PAG (AD6)

PA7 (AD7)

PG2 (ALE)

PJ6 (PCINT15)

PJ5 (PCINT14)

PJ4 (PCINT13)

PJ3 (PCINT12)

PJ2 (XCK3/PCINT11)
PJ1 (TXD3/PCINT10)
PJO (RXD3/PCINT9)
GND
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PC7 (A15)

PC6 (A14)

PC5 (A13)

PC4 (A12)

PC3 (A11)

PC2 (A10)
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PCO (A8)

PG1 (RD)
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Figure 2. CBGA-pinout ATmega640/1280/2560
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Table 1. CBGA-pinout ATmega640/1280/2560.

1 2 3 4 5 6 7 8 9 10
A GND AREF PFO PF2 PF5 PKO PK3 PK6 GND VCC
B AVCC PG5 PF1 PF3 PF6 PK1 PK4 PK7 PAO PA2
C PE2 PEO PE1 PF4 PF7 PK2 PK5 PJ7 PA1 PA3
D PE3 PE4 PES PE6 PH2 PA4 PA5 PAG PA7 PG2
E PE7 PHO PH1 PH3 PH5 PJ6 PJ5 PJ4 PJ3 PJ2
F VCC PH4 PH6 PBO PL4 PD1 PJ1 PJO PC7 GND
G GND PB1 PB2 PB5 PL2 PDO PD5 PC5 PCé6 VCC
H PB3 PB4 RESET PL1 PL3 PL7 PD4 PC4 PC3 PC2
J PH7 PG3 PB6 PLO XTAL2 PL6 PD3 PC1 PCO PG1
K PB7 PG4 VCC GND XTALA PL5 PD2 PD6 PD7 PGO

ATMEL ;
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Figure 3. Pinout ATmega1281/2561
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Note:  The large center pad underneath the QFN/MLF package is made of metal and internally
connected to GND. It should be soldered or glued to the board to ensure good mechani-
cal stability. If the center pad is left unconnected, the package might loosen from the
board.

Disclaimer Typical values contained in this datasheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min.
and Max values will be available after the device is characterized.

4 ATmega640/1280/1281/2560/2561 m———
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Overview

The ATmega640/1280/1281/2560/2561 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega640/1280/1281/2560/2561 achieves
throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing
speed.

Block Diagram

Figure 4. Block Diagram
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The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega640/1280/1281/2560/2561 provides the following features: 64K/128K/256K
bytes of In-System Programmable Flash with Read-While-Write capabilities, 4K bytes
EEPROM, 8K bytes SRAM, 54/86 general purpose I/O lines, 32 general purpose work-
ing registers, Real Time Counter (RTC), six flexible Timer/Counters with compare
modes and PWM, 4 USARTS, a byte oriented 2-wire Serial Interface, a 16-channel, 10-
bit ADC with optional differential input stage with programmable gain, programmable
Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant
JTAG test interface, also used for accessing the On-chip Debug system and program-
ming and six software selectable power saving modes. The Idle mode stops the CPU
while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue
functioning. The Power-down mode saves the register contents but freezes the Oscilla-
tor, disabling all other chip functions until the next interrupt or Hardware Reset. In
Power-save mode, the asynchronous timer continues to run, allowing the user to main-
tain a timer base while the rest of the device is sleeping. The ADC Noise Reduction
mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to min-
imize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator
Oscillator is running while the rest of the device is sleeping. This allows very fast start-up
combined with low power consumption. In Extended Standby mode, both the main
Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel’s high-density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed in-system
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-Programmable Flash on a monolithic chip, the Atmel
ATmega640/1280/1281/2560/2561 is a powerful microcontroller that provides a highly
flexible and cost effective solution to many embedded control applications.

The ATmega640/1280/1281/2560/2561 AVR is supported with a full suite of program
and system development tools including: C compilers, macro assemblers, program
debugger/simulators, in-circuit emulators, and evaluation kits.

ATmega640/1280/1281/2560/2561 m———
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Comparison Between ATmega1281/2561 and ATmega640/1280/2560

Table 2. Configuration Summary

Each device in the ATmega640/1280/1281/2560/2561 family differs only in memory size
and number of pins. Table 2 summarizes the different configurations for the six devices.

General 16 bits resolution Serial ADC
Device Flash EEPROM RAM Purpose I/O pins PWM channels USARTSs Channels
ATmega640 64KB 4KB 8KB 86 12 4 16
ATmegai280 128KB 4KB 8KB 86 12 4 16
ATmega1281 128KB 4KB 8KB 54 6 2 8
ATmega2560 256KB 4KB 8KB 86 12 4 16
ATmega2561 256KB 4KB 8KB 54 6 2 8

Pin Descriptions

vCcC

GND

Port A (PA7..PAO)

Port B (PB7..PB0)

Port C (PC7..PCO)

Port D (PD7..PDO)

2549K-AVR-01/07

Digital supply voltage.
Ground.

Port A is an 8-bit bi-directional I/0O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the
ATmega640/1280/1281/2560/2561 as listed on page 91.

Port B is an 8-bit bi-directional 1/0O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the
ATmega640/1280/1281/2560/2561 as listed on page 92.

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the
ATmega640/1280/1281/2560/2561 as listed on page 95.

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source

ATMEL 7



Port E (PE7..PEO)

Port F (PF7..PFO0)

Port G (PG5..PGO0)

Port H (PH7..PHO)

Port J (PJ7..PJO)

Port K (PK7..PKO)

ATMEL

current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the
ATmega640/1280/1281/2560/2561 as listed on page 97.

Port E is an 8-bit bi-directional I/0O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the
ATmega640/1280/1281/2560/2561 as listed on page 99.

Port F serves as analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional 1/0 port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output
buffers have symmetrical drive characteristics with both high sink and source capability.
As inputs, Port F pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port F pins are tri-stated when a reset condition becomes
active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resis-
tors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset
occurs.

Port F also serves the functions of the JTAG interface.

Port G is a 6-bit I/O port with internal pull-up resistors (selected for each bit). The Port G
output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the
pull-up resistors are activated. The Port G pins are tri-stated when a reset condition
becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the
ATmega640/1280/1281/2560/2561 as listed on page 105.

Port H is a 8-bit bi-directional 1/O port with internal pull-up resistors (selected for each
bit). The Port H output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port H pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port H pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port H also serves the functions of various special features of the
ATmega640/1280/2560 as listed on page 107.

Port J is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port J output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port J pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port J also serves the functions of various special features of the
ATmega640/1280/2560 as listed on page 109.

Port K serves as analog inputs to the A/D Converter.

8 ATmega640/1280/1281/2560/2561 m———
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Port K is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port K output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port K pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port K pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port K also serves the functions of various special features of the
ATmega640/1280/2560 as listed on page 111.

Port L (PL7..PLO) Port L is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port L output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port L pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port L pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port L also serves the functions of various special features of the
ATmega640/1280/2560 as listed on page 113.

RESET Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
26 on page 58. Shorter pulses are not guaranteed to generate a reset.

XTALA1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
XTAL2 Output from the inverting Oscillator amplifier.
AVCC AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally

connected to V¢, even if the ADC is not used. If the ADC is used, it should be con-
nected to V. through a low-pass filter.

AREF This is the analog reference pin for the A/D Converter.

Resources

A comprehensive set of development tools and application notes, and datasheets are
available for download on http://www.atmel.com/avr.

About Code Examples

This documentation contains simple code examples that briefly show how to use various
parts of the device. Be aware that not all C compiler vendors include bit definitions in the
header files and interrupt handling in C is compiler dependent. Please confirm with the
C compiler documentation for more details.

These code examples assume that the part specific header file is included before com-
pilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC",
"CBI", and "SBI" instructions must be replaced with instructions that allow access to
extended /0. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and
"CBR".

ATMEL ;
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AVR CPU Core

Introduction

Architectural Overview

ATMEL

This section discusses the AVR core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to
access memories, perform calculations, control peripherals, and handle interrupts.

Figure 5. Block Diagram of the AVR Architecture
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In order to maximize performance and parallelism, the AVR uses a Harvard architecture
— with separate memories and buses for program and data. Instructions in the program
memory are executed with a single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-
System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,

10 ATmega640/1280/1281/2560/2561 m—————
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ALU - Arithmetic Logic
Unit

Status Register

2549K-AVR-01/07

the operation is executed, and the result is stored back in the Register File — in one
clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing — enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and
the Application Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM instruction that writes into the Application Flash memory
section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the Reset routine (before subroutines
or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the 1/0
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional
Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt
Vector in the Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.

The I/0O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as
the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition,
the ATmega640/1280/1281/2560/2561 has Extended 1/O space from 0x60 - Ox1FF in
SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used.

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories — arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.

The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will in many cases
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remove the need for using the dedicated compare instructions, resulting in faster and
more compact code.

The Status Register is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by software.

The AVR Status Register — SREG — is defined as:

Bit 7 6 5 4 3 2 1 0
ox3F@xsF) [ 1 | T | H | s | Vv N z C | SREG
Read/Write RW RIW RW R/W RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individ-
ual interrupt enable control is then performed in separate control registers. If the Global
Interrupt Enable Register is cleared, none of the interrupts are enabled independent of
the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt
has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-
bit can also be set and cleared by the application with the SEI and CLI instructions, as
described in the instruction set reference.

e Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or
destination for the operated bit. A bit from a register in the Register File can be copied
into T by the BST instruction, and a bit in T can be copied into a bit in a register in the
Register File by the BLD instruction.

* Bit 5 — H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is
useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.
e Bit4-S:SignBit,S=N®V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Comple-
ment Overflow Flag V. See the “Instruction Set Description” for detailed information.

* Bit 3 - V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See
the “Instruction Set Description” for detailed information.

¢ Bit 2 — N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.

e Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

e Bit 0 - C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruc-
tion Set Description” for detailed information.

12 ATmega640/1280/1281/2560/2561 m—————
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General Purpose
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The Register File is optimized for the AVR Enhanced RISC instruction set. In order to
achieve the required performance and flexibility, the following input/output schemes are
supported by the Register File:

¢ One 8-bit output operand and one 8-bit result input
e Two 8-bit output operands and one 8-bit result input
e Two 8-bit output operands and one 16-bit result input
¢ One 16-bit output operand and one 16-bit result input

Figure 6 shows the structure of the 32 general purpose working registers in the CPU.

Figure 6. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0xO0E
Purpose R15 O0xOF
Working R16 0x10
Registers R17 0x11
R26 Ox1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers,
and most of them are single cycle instructions.

As shown in Figure 6 on page 13, each register is also assigned a data memory
address, mapping them directly into the first 32 locations of the user Data Space.
Although not being physically implemented as SRAM locations, this memory organiza-
tion provides great flexibility in access of the registers, as the X-, Y- and Z-pointer
registers can be set to index any register in the file.
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The X-register, Y-register, and The registers R26..R31 have some added functions to their general purpose usage.

Z-register

Stack Pointer

These registers are 16-bit address pointers for indirect addressing of the data space.
The three indirect address registers X, Y, and Z are defined as described in Figure 7.

Figure 7. The X-, Y-, and Z-registers

15 XH XL
X-register |7 o7 o]
R27 (0x1B) R26 (Ox1A)
15 YH YL
Y-register I 7 0 I 7 0 I
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register |7 0 |7 0 |
R31 (Ox1F) R30 (Ox1E)

In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the instruction set
reference for details).

The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Regis-
ter always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above 0x0200. The initial value of the stack pointer is the
last address of the internal SRAM. The Stack Pointer is decremented by one when data
is pushed onto the Stack with the PUSH instruction, and it is decremented by two for
ATmega640/1280/1281 and three for ATmega2560/2561 when the return address is
pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incre-
mented by one when data is popped from the Stack with the POP instruction, and it is
incremented by two for ATmega640/1280/1281 and three for ATmega2560/2561 when
data is popped from the Stack with return from subroutine RET or return from interrupt
RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/0O space. The num-
ber of bits actually used is implementation dependent. Note that the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.

Bit 15 14 13 12 11 10 9 8
0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 1 0 0 0 0 1

-
-
-
-
-
-
-
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RAMPZ - Extended Z-pointer
Register for ELPM/SPM

EIND - Extended Indirect
Register
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Bit 7 6 5 4 3 2 1 0

0x3B (0x5B) I RAMPZ7 RAMPZ6 RAMPZ5 RAMPZ4 RAMPZ3 RAMPZ2 RAMPZ1 RAMPZ0 I RAMPZ
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

For ELPM/SPM instructions, the Z-pointer is a concatenation of RAMPZ, ZH, and ZL, as
shown in Figure 8. Note that LPM is not affected by the RAMPZ setting.

Figure 8. The Z-pointer used by ELPM and SPM

Bit ( 7 0 7 0 7 0
Individually)

| RAMPZ | ZH | ZL |
Bit (Z-pointer) 23 16 15 8 7 0

The actual number of bits is implementation dependent. Unused bits in an implementa-
tion will always read as zero. For compatibility with future devices, be sure to write these
bits to zero.

Bit 7 6 5 4 3 2 1 0
0x3C (0x5C) I EIND7 EIND6 EIND5 EIND4 EIND3 EIND2 EIND1 EINDO I EIND
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

For EICALL/EIJMP instructions, the Indirect-pointer to the subroutine/routine is a con-
catenation of EIND, ZH, and ZL, as shown in Figure 9. Note that ICALL and IJMP are
not affected by the EIND setting.

Figure 9. The Indirect-pointer used by EICALL and EIUMP

Bit (Individual- 7 0 7 0 7 0
ly)

| EIND | ZH | zL |
Bit (Indirect- 23 16 15 8 7 0
pointer)

The actual number of bits is implementation dependent. Unused bits in an implementa-
tion will always read as zero. For compatibility with future devices, be sure to write these
bits to zero.
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Instruction Execution This section describes the general access timing concepts for instruction execution. The

Timing

16

AVR CPU is driven by the CPU clock clkgp, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 10 shows the parallel instruction fetches and instruction executions enabled by
the Harvard architecture and the fast-access Register File concept. This is the basic
pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results
for functions per cost, functions per clocks, and functions per power-unit.

Figure 10. The Parallel Instruction Fetches and Instruction Executions
T T2 T3 T4

ok —1 A N

CPU
1st Instruction Fetch

1

i

1st Instruction Execute :
2nd Instruction Fetch :

1

1

1

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch X X \ |

Figure 11 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 11. Single Cycle ALU Operation
T T2 T3 T4

O A N A N S N A N

CPU
Total Execution Time

1

1

1

:
Register Operands Fetch :
1

ALU Operation Execute :

1

1

Result Write Back : ]
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Reset and Interrupt
Handling
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The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate program vector in the program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 342 for details.

The lowest addresses in the program memory space are by default defined as the Reset
and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 69.
The list also determines the priority levels of the different interrupts. The lower the
address the higher is the priority level. RESET has the highest priority, and next is INTO
— the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of
the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR).
Refer to “Interrupts” on page 69 for more information. The Reset Vector can also be
moved to the start of the Boot Flash section by programming the BOOTRST Fuse, see
“Memory Programming” on page 342.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts
are disabled. The user software can write logic one to the I-bit to enable nested inter-
rupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that
sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the
actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a
logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remem-
bered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or
more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the cor-
responding Interrupt Flag(s) will be set and remembered until the Global Interrupt
Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present.
These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disap-
pears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and exe-
cute one more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine, nor restored when returning from an interrupt routine. This must be handled by
software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately
disabled. No interrupt will be executed after the CLI instruction, even if it occurs simulta-
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neously with the CLI instruction. The following example shows how this can be used to
avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; Store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; Sstart EEPROM write

sbi EECR, EEPE

out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */
__disable_interrupt() ;

EECR |: (1<<EEMPE); /* start EEPROM write */
EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEl instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in this example.

Assembly Code Example

sei ; set Global Interrupt Enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */
_ _sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

The interrupt execution response for all the enabled AVR interrupts is five clock cycles
minimum. After five clock cycles the program vector address for the actual interrupt han-
dling routine is executed. During these five clock cycle period, the Program Counter is
pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by five clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes five clock cycles. During these five
clock cycles, the Program Counter (three bytes) is popped back from the Stack, the
Stack Pointer is incremented by three, and the I-bit in SREG is set.

18 ATmega640/1280/1281/2560/2561 m—————
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This section describes the different memories in the ATmega640/1280/1281/2560/2561.
The AVR architecture has two main memory spaces, the Data Memory and the Program
Memory space. In addition, the ATmega640/1280/1281/2560/2561 features an
EEPROM Memory for data storage. All three memory spaces are linear and regular.

The ATmega640/1280/1281/2560/2561 contains 64K/128K/256K bytes On-chip In-Sys-
tem Reprogrammable Flash memory for program storage, see Table 3 on page 19.
Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as
32K/64K/128K x 16. For software security, the Flash Program memory space is divided
into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmega640/1280/1281/2560/2561 Program Counter (PC) is 15/16/17 bits wide, thus
addressing the 32K/64K/128K program memory locations. The operation of Boot Pro-
gram section and associated Boot Lock bits for software protection are described in
detail in “Boot Loader Support — Read-While-Write Self-Programming” on page 323.
“Memory Programming” on page 342 contains a detailed description on Flash data
serial downloading using the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see
the LPM — Load Program Memory instruction description and ELPM - Extended Load
Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execu-
tion Timing” on page 16.

Table 3. Program Flash Memory Map
Address (HEX)
0

Application Flash Section

Boot Flash Section
0x7FFF/OxFFFF/Ox1FFFF
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Table 4 on page 21 shows how the ATmega640/1280/1281/2560/2561 SRAM Memory
is organized.

The ATmega640/1280/1281/2560/2561 is a complex microcontroller with more periph-
eral units than can be supported within the 64 location reserved in the Opcode for the IN
and OUT instructions. For the Extended 1/0 space from $060 - $1FF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

The first 4,608/8,704 Data Memory locations address both the Register File, the I/O
Memory, Extended I/O Memory, and the internal data SRAM. The first 32 locations
address the Register file, the next 64 location the standard /0 Memory, then 416 loca-
tions of Extended I/O memory and the next 8,192 locations address the internal data
SRAM.

An optional external data SRAM can be used with the
ATmega640/1280/1281/2560/2561. This SRAM will occupy an area in the remaining
address locations in the 64K address space. This area starts at the address following
the internal SRAM. The Register file, I/O, Extended 1/O and Internal SRAM occupies the
lowest 4,608/8,704 bytes, so when using 64KB (65,536 bytes) of External Memory,
60,478/56,832 Bytes of External Memory are available. See “External Memory Inter-
face” on page 26 for details on how to take advantage of the external memory map.

When the addresses accessing the SRAM memory space exceeds the internal data
memory locations, the external data SRAM is accessed using the same instructions as
for the internal data memory access. When the internal data memories are accessed,
the read and write strobe pins (PGO and PG1) are inactive during the whole access
cycle. External SRAM operation is enabled by setting the SRE bit in the XMCRA
Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access
of the internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD,
PUSH, and POP take one additional clock cycle. If the Stack is placed in external
SRAM, interrupts, subroutine calls and returns take three clock cycles extra because the
three-byte program counter is pushed and popped, and external memory access does
not take advantage of the internal pipe-line memory access. When external SRAM inter-
face is used with wait-state, one-byte external access takes two, three, or four additional
clock cycles for one, two, and three wait-states respectively. Interrupts, subroutine calls
and returns will need five, seven, or nine clock cycles more than specified in the instruc-
tion set manual for one, two, and three wait-states.

The five different addressing modes for the data memory cover: Direct, Indirect with Dis-
placement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In
the Register file, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base
address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O registers, and the 4,196/8,192 bytes of
internal data SRAM in the ATmega640/1280/1281/2560/2561 are all accessible through
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all these addressing modes. The Register File is described in “General Purpose Regis-
ter File” on page 13.

Table 4. Data Memory Map

Address (HEX)
0-1F 32 Registers
20 - 5F 64 1/0 Registers
60 - 1FF 416 External I/0O Registers
200 Internal SRAM
21FF (8192 x 8)
2200 External SRAM
(0 - 64K x 8)
FFFF

Data Memory Access Times This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clkgp, cycles as described in Figure
12.

Figure 12. On-chip Data SRAM Access Cycles

T T2 T3
1 1 1
1 1 1
1 1 1

ok . —1  — 4 N

CPU I ' .
Address , Compute Address |, X Address valid
] ] ]
Data : ~ D, 1o
] ] ] E
] ] 1
WR 1 1/ 1\ =
I 1 1 —
] ] / | —_
Data t — D -
] ] 1 8
] ] ]
o
RD ! 1/ "\
] ] ] -
Memory Access Instruction Next Instruction
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The ATmega640/1280/1281/2560/2561 contains 4K bytes of data EEPROM memory. It
is organized as a separate data space, in which single bytes can be read and written.
The EEPROM has an endurance of at least 100,000 write/erase cycles. The access
between the EEPROM and the CPU is described in the following, specifying the
EEPROM Address Registers, the EEPROM Data Register, and the EEPROM Control
Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM,
see “Serial Downloading” on page 356, “Programming via the JTAG Interface” on page
361, and “Programming the EEPROM” on page 350 respectively.

The EEPROM Access Registers are accessible in the I/O space, see “Register Descrip-
tion” on page 32.

The write access time for the EEPROM is given in Table 5 on page 22. A self-timing
function, however, lets the user software detect when the next byte can be written. If the
user code contains instructions that write the EEPROM, some precautions must be
taken. In heavily filtered power supplies, V¢ is likely to rise or fall slowly on power-
up/down. This causes the device for some period of time to run at a voltage lower than
specified as minimum for the clock frequency used. See “Preventing EEPROM Corrup-
tion” on page 24. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. See the description of the EEPROM Control Register for details on this, “Register
Description” on page 32.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.

The calibrated Oscillator is used to time the EEPROM accesses. Table 5 lists the typical
programming time for EEPROM access from the CPU.

Table 5. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles | Typ Programming Time
EEPROM write
(from CPU) 26,368 3.3ms

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The
examples also assume that no Flash Boot Loader is present in the software. If such
code is present, the EEPROM write function must also wait for any ongoing SPM com-
mand to finish.

22 ATmega640/1280/1281/2560/2561 m————
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Assembly Code Example!

EEPROM_write:
; Wait for completion of previous write
sbic EECR, EEPE
rjmp EEPROM_write
; Set up address (rl8:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Write data (rl6é) to Data Register
out EEDR,rl6
; Write logical one to EEMPE
sbi EECR, EEMPE
; Start eeprom write by setting EEPE
sbi EECR, EEPE

ret

C Code Example"

void EEPROM_write (unsigned int uiAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while (EECR & (1<<EEPE))
/* Set up address and Data Registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMPE */
EECR |= (1<<EEMPE) ;
/* Start eeprom write by setting EEPE */
EECR |= (1<<EEPE);

Note: 1. See “About Code Examples” on page 9.

ATMEL
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The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during
execution of these functions.

Assembly Code Example("

EEPROM_read:
; Wait for completion of previous write
sbic EECR, EEPE
rjmp EEPROM_read
; Set up address (rl8:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from Data Register
in r1l6, EEDR

ret

C Code Example(")

unsigned char EEPROM_read(unsigned int uiAddress)
{
/* Wait for completion of previous write */

while (EECR & (1<<EEPE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

Note: 1. See “About Code Examples” on page 9.

During periods of low V¢ the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM, and the same design solutions should
be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design
recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD). If the detection
level of the internal BOD does not match the needed detection level, an external low
V¢ reset Protection circuit can be used. If a reset occurs while a write operation is in
progress, the write operation will be completed provided that the power supply voltage is
sufficient.

24  ATmega640/1280/1281/2560/2561 m—————
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The 1/0 space definition of the ATmega640/1280/1281/2560/2561 is shown in “Register
Summary” on page 416.

All ATmega640/1280/1281/2560/2561 1/Os and peripherals are placed in the I/O space.
All I/O locations may be accessed by the LD/LDS/LDD and ST/STS/STD instructions,
transferring data between the 32 general purpose working registers and the 1/0 space.
I/0 Registers within the address range 0x00 - Ox1F are directly bit-accessible using the
SBI and CBI instructions. In these registers, the value of single bits can be checked by
using the SBIS and SBIC instructions. Refer to the instruction set section for more
details. When using the 1/O specific commands IN and OUT, the 1/O addresses 0x00 -
0x3F must be used. When addressing I/O Registers as data space using LD and ST
instructions, 0x20 must be added to these addresses. The
ATmega640/1280/1281/2560/2561 is a complex microcontroller with more peripheral
units than can be supported within the 64 location reserved in Opcode for the IN and
OUT instructions. For the Extended I/O space from 0x60 - Ox1FF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike
most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and
can therefore be used on registers containing such Status Flags. The CBI and SBI
instructions work with registers 0x00 to Ox1F only.

The 1/O and peripherals control registers are explained in later sections.

The ATmega640/1280/1281/2560/2561 contains three General Purpose I/0O Registers.
These registers can be used for storing any information, and they are particularly useful
for storing global variables and Status Flags. General Purpose 1/O Registers within the
address range 0x00 - Ox1F are directly bit-accessible using the SBI, CBI, SBIS, and
SBIC instructions. See “Register Description” on page 32.
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Overview

Using the External Memory
Interface
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With all the features the External Memory Interface provides, it is well suited to operate
as an interface to memory devices such as External SRAM and Flash, and peripherals
such as LCD-display, A/D, and D/A. The main features are:

* Four different wait-state settings (including no wait-state).

* Independent wait-state setting for different External Memory sectors (configurable sector
size)

* The number of bits dedicated to address high byte is selectable

* Bus keepers on data lines to minimize current consumption (optional)

When the eXternal MEMory (XMEM) is enabled, address space outside the internal
SRAM becomes available using the dedicated External Memory pins (see Figure 3 on
page 4, Table 39 on page 91, Table 45 on page 95, and Table 57 on page 105). The
memory configuration is shown in Figure 13.

Figure 13. External Memory with Sector Select

Memory Configuration A

0x0000
Internal memory
0x21FF
A 0x2200
Lower sector
SRWO01
SRWO00
———————— 1SRL[2..O]
External Memory| Upper sector
(0-60K x 8)
SRW11
SRW10
v OxFFFF

The interface consists of:

e AD7:0: Multiplexed low-order address bus and data bus.

e A15:8: High-order address bus (configurable number of bits).

e ALE: Address latch enable.

* RD: Read strobe.

*  WR: Write strobe.

The control bits for the External Memory Interface are located in two registers, the Exter-

nal Memory Control Register A — XMCRA, and the External Memory Control Register B
— XMCRB.

When the XMEM interface is enabled, the XMEM interface will override the setting in the
data direction registers that corresponds to the ports dedicated to the XMEM interface.
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For details about the port override, see the alternate functions in section “I/O-Ports” on
page 83. The XMEM interface will auto-detect whether an access is internal or external.
If the access is external, the XMEM interface will output address, data, and the control
signals on the ports according to Figure 15 (this figure shows the wave forms without
wait-states). When ALE goes from high-to-low, there is a valid address on AD7:0. ALE is
low during a data transfer. When the XMEM interface is enabled, also an internal access
will cause activity on address, data and ALE ports, but the RD and WR strobes will not
toggle during internal access. When the External Memory Interface is disabled, the nor-
mal pin and data direction settings are used. Note that when the XMEM interface is
disabled, the address space above the internal SRAM boundary is not mapped into the
internal SRAM. Figure 14 illustrates how to connect an external SRAM to the AVR using
an octal latch (typically “74 x 573" or equivalent) which is transparent when G is high.

Due to the high-speed operation of the XRAM interface, the address latch must be
selected with care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V.
When operating at conditions above these frequencies, the typical old style 74HC series
latch becomes inadequate. The External Memory Interface is designed in compliance to
the 74AHC series latch. However, most latches can be used as long they comply with
the main timing parameters. The main parameters for the address latch are:

* D to Q propagation delay (tpp).
* Data setup time before G low (tg).
e Data (address) hold time after G low (7).

The External Memory Interface is designed to guaranty minimum address hold time
after G is asserted low of t, = 5 ns. Refer to t axx | p/ti axx st in “External Data Memory
Timing” Tables 173 through Tables 180 on pages 385 - 387. The D-to-Q propagation
delay (tsp) must be taken into consideration when calculating the access time require-
ment of the external component. The data setup time before G low (tg;) must not
exceed address valid to ALE low (tay c) minus PCB wiring delay (dependent on the
capacitive load).

Figure 14. External SRAM Connected to the AVR

AVR SRAM
/IJ \_'\ |'> D[7:0]
: T\ A
AD7:0 \l—l/ D Q A A[7:0]
ALE > G
| I
AEZB |'> ﬂ528]
RD > RD
WR > WR
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Pull-up and Bus-keeper

Timing

ATMEL

The pull-ups on the AD7:0 ports may be activated if the corresponding Port register is
written to one. To reduce power consumption in sleep mode, it is recommended to dis-
able the pull-ups by writing the Port register to zero before entering sleep.

The XMEM interface also provides a bus-keeper on the AD7:0 lines. The bus-keeper
can be disabled and enabled in software as described in “XMCRB — External Memory
Control Register B” on page 36. When enabled, the bus-keeper will keep the previous
value on the AD7:0 bus while these lines are tri-stated by the XMEM interface.

External Memory devices have different timing requirements. To meet these require-
ments, the XMEM interface provides four different wait-states as shown in Table 8. It is
important to consider the timing specification of the External Memory device before
selecting the wait-state. The most important parameters are the access time for the
external memory compared to the set-up requirement. The access time for the External
Memory is defined to be the time from receiving the chip select/address until the data of
this address actually is driven on the bus. The access time cannot exceed the time from
the ALE pulse must be asserted low until data is stable during a read sequence (See
t . r+ taLRK - tovew iN Tables 173 through Tables 180 on pages 385 - 387). The different
wait-states are set up in software. As an additional feature, it is possible to divide the
external memory space in two sectors with individual wait-state settings. This makes it
possible to connect two different memory devices with different timing requirements to
the same XMEM interface. For XMEM interface timing details, please refer to Table 173
to Table 180 and Figure 163 to Figure 166 in the “External Data Memory Timing” on
page 385.

Note that the XMEM interface is asynchronous and that the waveforms in the following
figures are related to the internal system clock. The skew between the internal and
external clock (XTAL1) is not guarantied (varies between devices temperature, and sup-
ply voltage). Consequently, the XMEM interface is not suited for synchronous operation.

Figure 15. External Data Memory Cycles without Wait-state (SRWn1=0 and SRWn0=0)

| ™ T2 | T3

I
1
System Clock (CLKgpy) _/_\_/_\_/_\_/_\_/_
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1
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l I

1 1
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1
A15:8  Prév. addr. X !
| | | L
DA7:0 Prdv. data :X Address )@(: Data X °
: : : | g
WR | : m
[ [ [ 1 -
1 1 1 1 1 -
1 i\ 1 1
DA7:0 (XMBK =0) _ Prév. data X Address —{ paa | ) :
X X | X |
L I L L | E
DA7:0 (XMBK = 1)  Prdv. data X Address X xxxxx X Data | X XxXxxxxxx X g
A X A A |
RD | : .m
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1 1 1 1 I

Note: 1. SRWn1 = SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O0 (lower sector). The ALE pulse in period T4 is only present if the
next instruction accesses the RAM (internal or external).
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Figure 16. External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1
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Note: 1. SRWn1 = SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O (lower sector).
The ALE pulse in period T5 is only present if the next instruction accesses the RAM
(internal or external).

Figure 17. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 0(")
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Note: 1. SRWn1 = SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O0 (lower sector).
The ALE pulse in period T6 is only present if the next instruction accesses the RAM
(internal or external).

ATMEL

29



Using all Locations of
External Memory Smaller than
64 KB

ATMEL

Figure 18. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 1)
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Note: 1. SRWn1 = SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O0 (lower sector).
The ALE pulse in period T7 is only present if the next instruction accesses the RAM
(internal or external).

Since the external memory is mapped after the internal memory as shown in Figure 13,
the external memory is not addressed when addressing the first 8,704 bytes of data
space. It may appear that the first 8,704 bytes of the external memory are inaccessible
(external memory addresses 0x0000 to 0x21FF). However, when connecting an exter-
nal memory smaller than 64 KB, for example 32 KB, these locations are easily accessed
simply by addressing from address 0x8000 to OxA1FF. Since the External Memory
Address bit A15 is not connected to the external memory, addresses 0x8000 to OxA1FF
will appear as addresses 0x0000 to 0x21FF for the external memory. Addressing above
address 0xA1FF is not recommended, since this will address an external memory loca-
tion that is already accessed by another (lower) address. To the Application software,
the external 32 KB memory will appear as one linear 32 KB address space from 0x2200
to OXA1FF. This is illustrated in Figure 19.

Figure 19. Address Map with 32 KB External Memory

AVR Memory Map External 32K SRAM

0x0000 0x0000
Internal Memory

Ox21FF |_ _ _ _ _ | L __ _ _ _

0x2200

ox7rFF | External - OX7FFF

0x8000 Memory

Ox90FF |_ _ _ _ _ _

0x9100
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Since the External Memory is mapped after the Internal Memory as shown in Figure 13,
only 56KB of External Memory is available by default (address space 0x0000 to Ox21FF
is reserved for internal memory). However, it is possible to take advantage of the entire
External Memory by masking the higher address bits to zero. This can be done by using
the XMMn bits and control by software the most significant bits of the address. By set-
ting Port C to output 0x00, and releasing the most significant bits for normal Port Pin
operation, the Memory Interface will address 0x0000 - Ox2FFF. See the following code
examples.

Care must be exercised using this option as most of the memory is masked away.

Assembly Code Example("

; OFFSET is defined to 0x4000 to ensure

; external memory access

; Configure Port C (address high byte) to
; output 0x00 when the pins are released
; for normal Port Pin operation

1di rlée, OxFF

out DDRC, rlé6

1di rl6, 0x00

out PORTC, rlé6

; release PC7:6

1di rl6, (l<<XMM1)

sts XMCRB, rlé6

; write OxXAA to address 0x0001 of external
; memory

1di rl6, Oxaa

sts 0x0001+OFFSET, rlé6

; re-enable PC7:6 for external memory
1di rle, (0<<XMM1)

sts XMCRB, rl6

; store 0x55 to address (OFFSET + 1) of
; external memory

1di rl6, 0x55

sts 0x0001+OFFSET, rlé6

C Code Example(")

#define OFFSET 0x4000
void XRAM_example (void)
{

unsigned char *p = (unsigned char *) (OFFSET + 1);

DDRC = OxFF;
PORTC = 0x00;

XMCRB = (1<<XMM1) ;

*p = 0xaa;

XMCRB = 0x00;

*p = 0x55;

Note: 1. See “About Code Examples” on page 9.
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Register Description
EEPROM registers

EEARH and EEARL - The
EEPROM Address Register

EEDR - The EEPROM Data
Register

EECR - The EEPROM Control
Register

ATMEL

Bit 15 14 13 12 11 10 9 8
0x22 (0x42) - N - - EEAR11 | EEAR10 | EEAR9 | EEARS EEARH
0x21 (0x41) EEAR7 | EEAR6 | EEAR5 | EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 X X X X
X X X X X X X X

¢ Bits 15:12 — Res: Reserved Bits

These bits are reserved bits and will always read as zero.

* Bits 11:0 - EEAR8:0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address
in the 4K bytes EEPROM space. The EEPROM data bytes are addressed linearly
between 0 and 4096. The initial value of EEAR is undefined. A proper value must be
written before the EEPROM may be accessed.

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) | MSB LsB | EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 7:0 - EEDR7:0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

Bit 7 6 5 4 3 2 1 0
0x1F (Ox3F) I - N EEPM1 EEPMO EERIE EEMPE EEPE EERE I EECR
Read/Write R R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 X X 0 0 X 0

e Bits 7:6 — Res: Reserved Bits

These bits are reserved bits and will always read as zero.
e Bits 5,4 - EEPM1 and EEPM0: EEPROM Programming Mode Bits

The EEPROM Programming mode bit setting defines which programming action that will
be triggered when writing EEPE. It is possible to program data in one atomic operation
(erase the old value and program the new value) or to split the Erase and Write opera-
tions in two different operations. The Programming times for the different modes are
shown in Table 6. While EEPE is set, any write to EEPMn will be ignored. During reset,
the EEPMn bits will be reset to 0b00 unless the EEPROM is busy programming.
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Table 6. EEPROM Mode Bits

Programming
EEPM1 | EEPMO Time Operation
0 0 3.4 ms Erase and Write in one operation (Atomic Operation)
0 1 1.8 ms Erase Only
1 0 1.8 ms Write Only
1 1 - Reserved for future use

* Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEPE is cleared.

e Bit 2 - EEMPE: EEPROM Master Programming Enable

The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be
written. When EEMPE is set, setting EEPE within four clock cycles will write data to the
EEPROM at the selected address If EEMPE is zero, setting EEPE will have no effect.
When EEMPE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEPE bit for an EEPROM write procedure.

e Bit 1 — EEPE: EEPROM Programming Enable

The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEPE bit must be written to one to write the
value into the EEPROM. The EEMPE bit must be written to one before a logical one is
written to EEPE, otherwise no EEPROM write takes place. The following procedure

should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):

Wait until EEPE becomes zero.

Wait until SPMEN in SPMCSR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.
Within four clock cycles after setting EEMPE, write a logical one to EEPE.

oo~ 0bd =

The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Memory Programming” on page 342 for details about Boot
programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user
software can poll this bit and wait for a zero before writing the next byte. When EEPE
has been set, the CPU is halted for two cycles before the next instruction is executed.

ATMEL 5
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General Purpose registers

GPIOR2 - General Purpose I/0
Register 2

GPIOR1 - General Purpose I/O
Register 1

GPIORO - General Purpose I/0
Register 0

External Memory registers

XMCRA - External Memory
Control Register A

ATMEL

* Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be written to a logic
one to trigger the EEPROM read. The EEPROM read access takes one instruction, and
the requested data is available immediately. When the EEPROM is read, the CPU is
halted for four cycles before the next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Register.

Bit 7 6 5 4 3 2 1 0
0x2B (0x4B) | MSB LSB ]| GPIOR2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
0x2A (0x4A) | MSB LSB ]| GPIOR1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
Ox1E (0x3E) | MsB LsB | GPIORo
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
“(0x74)” | sre SRL2 SRL1 SRLO | SRW11 | SRW10 | SRW01 | SRW00 | XMCRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — SRE: External SRAM/XMEM Enable

Writing SRE to one enables the External Memory Interface.The pin functions AD7:0,
A15:8, ALE, WR, and RD are activated as the alternate pin functions. The SRE bit over-
rides any pin direction settings in the respective data direction registers. Writing SRE to
zero, disables the External Memory Interface and the normal pin and data direction set-
tings are used.

¢ Bit 6:4 — SRL2:0: Wait-state Sector Limit

It is possible to configure different wait-states for different External Memory addresses.
The external memory address space can be divided in two sectors that have separate
wait-state bits. The SRL2, SRL1, and SRLO bits select the split of the sectors, see Table
7 and Figure 13. By default, the SRL2, SRL1, and SRLO bits are set to zero and the
entire external memory address space is treated as one sector. When the entire SRAM
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address space is configured as one sector, the wait-states are configured by the
SRW11 and SRW10 bits.

Table 7. Sector limits with different settings of SRL2:0

SRL2 SRL1

SRLO

Sector Limits

0

0

Lower sector = N/A
Upper sector = 0x2200 - OxFFFF

Lower sector = 0x2200 - Ox3FFF
Upper sector = 0x4000 - OxFFFF

Lower sector = 0x2200 - OX5FFF
Upper sector = 0x6000 - OxFFFF

Lower sector = 0x2200 - Ox7FFF
Upper sector = 0x8000 - OxFFFF

Lower sector = 0x2200 - Ox9FFF
Upper sector = 0xA000 - OxFFFF

Lower sector = 0x2200 - OXxBFFF
Upper sector = 0xC000 - OxFFFF

Lower sector = 0x2200 - OXDFFF
Upper sector = OXE000 - OxFFFF

¢ Bit 3:2 - SRW11, SRW10: Wait-state Select Bits for Upper Sector

The SRW11 and SRW10 bits control the number of wait-states for the upper sector of
the external memory address space, see Table 8.

e Bit 1:0 - SRW01, SRW00: Wait-state Select Bits for Lower Sector

The SRWO01 and SRWO0O bits control the number of wait-states for the lower sector of
the external memory address space, see Table 8.

Table 8. Wait States("

SRWn1 | SRWn0 | Wait States
0 0 No wait-states
0 1 Wait one cycle during read/write strobe
1 0 Wait two cycles during read/write strobe
1 1 Wait two cycles during read/write and wait one cycle before driving out
new address
Note: 1. n=0or 1 (lower/upper sector).

2549K-AVR-01/07

For further details of the timing and wait-states of the External Memory Interface, see
Figures 15 through Figures 18 for how the setting of the SRW bits affects the timing.
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XMCRB - External Memory
Control Register B

Bit 7 6 5 4 3 2 1 0
(0x75) | xmBk - - - XMM2 XMM1 XMMO | XMCRB
Read/Write R/W R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7- XMBK: External Memory Bus-keeper Enable

Writing XMBK to one enables the bus keeper on the AD7:0 lines. When the bus keeper
is enabled, AD7:0 will keep the last driven value on the lines even if the XMEM interface
has tri-stated the lines. Writing XMBK to zero disables the bus keeper. XMBK is not
qualified with SRE, so even if the XMEM interface is disabled, the bus keepers are still
activated as long as XMBK is one.

¢ Bit 6:3 — Res: Reserved Bits

These bits are reserved and will always read as zero. When writing to this address loca-
tion, write these bits to zero for compatibility with future devices.

¢ Bit 2:0 - XMM2, XMM1, XMMO: External Memory High Mask

When the External Memory is enabled, all Port C pins are default used for the high
address byte. If the full 60KB address space is not required to access the External Mem-
ory, some, or all, Port C pins can be released for normal Port Pin function as described
in Table 9. As described in “Using all 64KB Locations of External Memory” on page 31,
it is possible to use the XMMn bits to access all 64KB locations of the External Memory.

Table 9. Port C Pins Released as Normal Port Pins when the External Memory is
Enabled

XMM2 | XMM1 | XMMO | # Bits for External Memory Address Released Port Pins

0 0 0 8 (Full 56KB space) None

0 0 1 7 PC7

0 1 0 6 PC7 - PC6

0 1 1 5 PC7 - PC5

1 0 0 4 PC7 - PC4

1 0 1 3 PC7 - PC3

1 1 0 2 PC7 - PC2

1 1 1 No Address high bits Full Port C
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System Clock and
Clock Options

Overview
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This section describes the clock options for the AVR microcontroller.

Figure 20 presents the principal clock systems in the AVR and their distribution. All of
the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to modules not being used can be halted by using different sleep modes, as
described in “Power Management and Sleep Modes” on page 50. The clock systems
are detailed below.

Figure 20. Clock Distribution
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The CPU clock is routed to parts of the system concerned with operation of the AVR
core. Examples of such modules are the General Purpose Register File, the Status Reg-
ister and the data memory holding the Stack Pointer. Halting the CPU clock inhibits the
core from performing general operations and calculations.

The 1/O clock is used by the majority of the 1/0 modules, like Timer/Counters, SPI, and
USART. The I/O clock is also used by the External Interrupt module, but note that some
external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the 1/O clock is halted. Also note that start condition detection in the USI
module is carried out asynchronously when clkq is halted, TWI address recognition in
all sleep modes.

The Flash clock controls operation of the Flash interface. The Flash clock is usually
active simultaneously with the CPU clock.

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked
directly from an external clock or an external 32 kHz clock crystal. The dedicated clock
domain allows using this Timer/Counter as a real-time counter even when the device is
in sleep mode.

The ADC is provided with a dedicated clock domain. This allows halting the CPU and
I/0 clocks in order to reduce noise generated by digital circuitry. This gives more accu-
rate ADC conversion results.
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Clock Sources The device has the following clock source options, selectable by Flash Fuse bits as
shown below. The clock from the selected source is input to the AVR clock generator,
and routed to the appropriate modules.

Table 10. Device Clocking Options Select("

Device Clocking Option CKSEL3:0
Low Power Crystal Oscillator 1111 - 1000
Full Swing Crystal Oscillator 0111 -0110
Low Frequency Crystal Oscillator 0101 - 0100
Internal 128 kHz RC Oscillator 0011
Calibrated Internal RC Oscillator 0010
External Clock 0000
Reserved 0001

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

Default Clock Source The device is shipped with internal RC oscillator at 8.0 MHz and with the fuse CKDIV8
programmed, resulting in 1.0 MHz system clock. The startup time is set to maximum
and time-out period enabled. (CKSEL = "0010", SUT = "10", CKDIV8 = "0"). The default
setting ensures that all users can make their desired clock source setting using any
available programming interface.

Clock Start-up Sequence Any clock source needs a sufficient V¢ to start oscillating and a minimum number of
oscillating cycles before it can be considered stable.

To ensure sufficient V¢, the device issues an internal reset with a time-out delay (troyt)
after the device reset is released by all other reset sources. “On-chip Debug System” on
page 53 describes the start conditions for the internal reset. The delay (troy7) is timed
from the Watchdog Oscillator and the number of cycles in the delay is set by the SUTx
and CKSELx fuse bits. The selectable delays are shown in Table 11. The frequency of
the Watchdog Oscillator is voltage dependent as shown in “Typical Characteristics” on

page 390.
Table 11. Number of Watchdog Oscillator Cycles
Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
0ms 0Oms 0
41ms 4.3 ms 512
65 ms 69 ms 8K (8,192)

Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum
Vcce. The delay will not monitor the actual voltage and it will be required to select a delay
longer than the Vcc rise time. If this is not possible, an internal or external Brown-Out
Detection circuit should be used. A BOD circuit will ensure sufficient Vcc before it
releases the reset, and the time-out delay can be disabled. Disabling the time-out delay
without utilizing a Brown-Out Detection circuit is not recommended.

The oscillator is required to oscillate for a minimum number of cycles before the clock is
considered stable. An internal ripple counter monitors the oscillator output clock, and
keeps the internal reset active for a given number of clock cycles. The reset is then
released and the device will start to execute. The recommended oscillator start-up time

ATMEL s
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is dependent on the clock type, and varies from 6 cycles for an externally applied clock
to 32K cycles for a low frequency crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up
time when the device starts up from reset. When starting up from Power-save or Power-
down mode, Vcc is assumed to be at a sufficient level and only the start-up time is
included.

Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier
which can be configured for use as an On-chip Oscillator, as shown in Figure 21. Either
a quartz crystal or a ceramic resonator may be used.

This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the
XTAL2 output. It gives the lowest power consumption, but is not capable of driving other
clock inputs, and may be more susceptible to noise in noisy environments. In these
cases, refer to the “Full Swing Crystal Oscillator” on page 42.

C1 and C2 should always be equal for both crystals and resonators. The optimal value
of the capacitors depends on the crystal or resonator in use, the amount of stray capac-
itance, and the electromagnetic noise of the environment. Some initial guidelines for
choosing capacitors for use with crystals are given in Table 12. For ceramic resonators,
the capacitor values given by the manufacturer should be used.

Figure 21. Crystal Oscillator Connections

Cc2

— TPy XTAL2
5
S xTALY
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The Low Power Oscillator can operate in three different modes, each optimized for a
specific frequency range. The operating mode is selected by the fuses CKSEL3:1 as
shown in Table 12.

Table 12. Low Power Crystal Oscillator Operating Modes®

Recommended Range for Capacitors
Frequency Range!" (MHz) CKSEL3:1 C1 and C2 (pF)
0.4-0.9 100® -
0.9-3.0 101 12-22
3.0-8.0 110 12-22
8.0-16.04 111 12-22

Notes: 1. The frequency ranges are preliminary values. Actual values are TBD.

2. This option should not be used with crystals, only with ceramic resonators.

3. If 8 MHz frequency exceeds the specification of the device (depends on V), the
CKDIV8 Fuse can be programmed in order to divide the internal frequency by 8. It
must be ensured that the resulting divided clock meets the frequency specification of
the device.
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4. Max frequency when using ceramic oscillator is 10 MHz.

The CKSELO Fuse together with the SUT1:0 Fuses select the start-up times as shown

in Table 13.

Table 13. Start-up Times for the Low Power Crystal Oscillator Clock Selection

Start-up Time from

Additional Delay

slowly rising power

Oscillator Source / Power-down and from Reset

Power Conditions Power-save (Vce =5.0V) CKSELO | SUT1:0
Ceramic resonator, fast 258 CK 14CK + 4.1 ms™" 0 00
rising power

Ceramic resonator, 258 CK 14CK + 65 ms(") 0 01
slowly rising power

Ceramic resonator, 1K CK 14CK®@ 0 10
BOD enabled

Ceramic resonator, fast 1K CK 14CK + 4.1 ms® 0 11
rising power

Ceramic resonator, 1K CK 14CK + 65 ms® 1 00
slowly rising power

Crystal Oscillator, BOD 16K CK 14CK 1 01
enabled

Crystal Oscillator, fast 16K CK 14CK + 4.1 ms 1 10
rising power

Crystal Oscillator, 16K CK 14CK + 65 ms 11

Notes: 1. These options should only be used when not operating close to the maximum fre-
quency of the device, and only if frequency stability at start-up is not important for the
application. These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure fre-
quency stability at start-up. They can also be used with crystals when not operating
close to the maximum frequency of the device, and if frequency stability at start-up is
not important for the application.

ATMEL
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Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier
which can be configured for use as an On-chip Oscillator, as shown in Figure 21. Either
a quartz crystal or a ceramic resonator may be used.

This Crystal Oscillator is a full swing oscillator, with rail-to-rail swing on the XTAL2 out-
put. This is useful for driving other clock inputs and in noisy environments. The current
consumption is higher than the “Low Power Crystal Oscillator’ on page 40. Note that the
Full Swing Crystal Oscillator will only operate for Vcc = 2.7 - 5.5 volts.

C1 and C2 should always be equal for both crystals and resonators. The optimal value
of the capacitors depends on the crystal or resonator in use, the amount of stray capac-
itance, and the electromagnetic noise of the environment. Some initial guidelines for
choosing capacitors for use with crystals are given in Table 15. For ceramic resonators,
the capacitor values given by the manufacturer should be used.

The operating mode is selected by the fuses CKSEL3:1 as shown in Table 14.

Table 14. Full Swing Crystal Oscillator operating modes®

Recommended Range for Capacitors
Frequency Range!" (MHz) CKSEL3:1 C1 and C2 (pF)

0.4-16 011 12-22

Notes: 1. The frequency ranges are preliminary values. Actual values are TBD.

2. If 8 MHz frequency exceeds the specification of the device (depends on Vc), the
CKDIV8 Fuse can be programmed in order to divide the internal frequency by 8. It
must be ensured that the resulting divided clock meets the frequency specification of
the device.

Figure 22. Crystal Oscillator Connections
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Table 15. Start-up Times for the Full Swing Crystal Oscillator Clock Selection

Start-up Time from

Additional Delay

slowly rising power

Oscillator Source / Power-down and from Reset

Power Conditions Power-save (Vec = 5.0V) CKSELO | SUT1:0
Ceramic resonator, fast 258 CK 14CK + 4.1 ms™" 0 00
rising power

Ceramic resonator, 258 CK 14CK + 65 ms(" 0 01
slowly rising power

Ceramic resonator, 1K CK 14CK®@ 0 10
BOD enabled

Ceramic resonator, fast 1K CK 14CK + 4.1 ms® 0 11
rising power

Ceramic resonator, 1K CK 14CK + 65 ms® 1 00
slowly rising power

Crystal Oscillator, BOD 16K CK 14CK 1 01
enabled

Crystal Oscillator, fast 16K CK 14CK + 4.1 ms 1 10
rising power

Crystal Oscillator, 16K CK 14CK + 65 ms 11

Notes: 1. These options should only be used when not operating close to the maximum fre-
quency of the device, and only if frequency stability at start-up is not important for the
application. These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure fre-
quency stability at start-up. They can also be used with crystals when not operating
close to the maximum frequency of the device, and if frequency stability at start-up is
not important for the application.
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The device can utilize a 32.768 kHz watch crystal as clock source by a dedicated Low
Frequency Crystal Oscillator. The crystal should be connected as shown in Figure 21.
When this Oscillator is selected, start-up times are determined by the SUT Fuses and
CKSELO as shown in Table 16.

Table 16. Start-up Times for the Low Frequency Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset

Power Conditions Power-save (Vec = 5.0V) CKSELO | SUT1:0
BOD enabled 1K CK 14CK™M 0 00
Fast rising power 1K CK 14CK + 4.1 ms() 0 01
Slowly rising power 1K CK 14CK + 65 ms‘" 0 10

Reserved 0 11
BOD enabled 32K CK 14CK 1 00
Fast rising power 32K CK 14CK + 4.1 ms 1 01
Slowly rising power 32K CK 14CK + 65 ms 1 10

Reserved 1 11

Note: 1. These options should only be used if frequency stability at start-up is not important
for the application.

By defaylt, the Internal RC Oscillator provides an approximate 8 MHz clock. Though volt-
age and temperature dependent, this clock can be very accurately calibrated by the
user. See Table 172 on page 384 and “Internal Oscillator Speed” on page 409 for more
details. The device is shipped with the CKDIV8 Fuse programmed. See “System Clock
Prescaler” on page 47 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as
shown in Table 17. If selected, it will operate with no external components. During reset,
hardware loads the pre-programmed calibration value into the OSCCAL Register and
thereby automatically calibrates the RC Oscillator. The accuracy of this calibration is
shown as Factory calibration in Table 172 on page 384.

By changing the OSCCAL register from SW, see “OSCCAL — Oscillator Calibration Reg-
ister” on page 48, it is possible to get a higher calibration accuracy than by using the
factory calibration. The accuracy of this calibration is shown as User calibration in Table
172 on page 384.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used
for the Watchdog Timer and for the Reset Time-out. For more information on the pre-
programmed calibration value, see the section “Calibration Byte” on page 345.
Table 17. Internal Calibrated RC Oscillator Operating Modes("®)
Frequency Range® (MHz) CKSEL3:0

7.3-8.1 0010

Notes: 1. The device is shipped with this option selected.
2. The frequency ranges are preliminary values. Actual values are TBD.
3. If 8 MHz frequency exceeds the specification of the device (depends on V), the
CKDIV8 Fuse can be programmed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 18 on page 45.
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Table 18. Start-up times for the internal calibrated RC Oscillator clock selection

Start-up Time from Power- | Additional Delay from
Power Conditions down and Power-save Reset (V¢ = 5.0V) SUT1:0
BOD enabled 6 CK 14CK 00
Fast rising power 6 CK 14CK + 4.1 ms 01
Slowly rising power 6 CK 14CK + 65 ms(" 10
Reserved 11

Note: 1. The device is shipped with this option selected.

The 128 kHz internal Oscillator is a low power Oscillator providing a clock of 128 kHz.
The frequency is nominal at 3V and 25°C. This clock may be select as the system clock
by programming the CKSEL Fuses to “11” as shown in Table 19.
Table 19. 128 kHz Internal Oscillator Operating Modes
Nominal Frequency CKSEL3:0

128 kHz 0011

Note: 1. The frequency is preliminary value. Actual value is TBD.

When this clock source is selected, start-up times are determined by the SUT Fuses as
shown in Table 20.

Table 20. Start-up Times for the 128 kHz Internal Oscillator

Start-up Time from Power- | Additional Delay from
Power Conditions down and Power-save Reset SUT1:0
BOD enabled 6 CK 14CK 00
Fast rising power 6 CK 14CK + 4 ms 01
Slowly rising power 6 CK 14CK + 64 ms 10
Reserved 11

To drive the device from an external clock source, XTAL1 should be driven as shown in
Figure 23. To run the device on an external clock, the CKSEL Fuses must be pro-

grammed to “0000”.

Figure 23. External Clock Drive Configuration
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When this clock source is selected, start-up times are determined by the SUT Fuses as
shown in Table 23.

Table 21. Crystal Oscillator Clock Frequency

Nominal Frequency CKSEL3:0
0-16 MHz 0000

Table 22. Start-up Times for the External Clock Selection

Start-up Time from Power- | Additional Delay from
Power Conditions down and Power-save Reset (V¢ = 5.0V) SUT1:0
BOD enabled 6 CK 14CK 00
Fast rising power 6 CK 14CK + 4.1 ms 01
Slowly rising power 6 CK 14CK + 65 ms 10
Reserved 11

When applying an external clock, it is required to avoid sudden changes in the applied
clock frequency to ensure stable operation of the MCU. A variation in frequency of more
than 2% from one clock cycle to the next can lead to unpredictable behavior. If changes
of more than 2% is required, ensure that the MCU is kept in Reset during the changes.

Note that the System Clock Prescaler can be used to implement run-time changes of
the internal clock frequency while still ensuring stable operation. Refer to “System Clock
Prescaler” on page 47 for details.

The device can output the system clock on the CLKO pin. To enable the output, the
CKOUT Fuse has to be programmed. This mode is suitable when the chip clock is used
to drive other circuits on the system. The clock also will be output during reset, and the
normal operation of 1/O pin will be overridden when the fuse is programmed. Any clock
source, including the internal RC Oscillator, can be selected when the clock is output on
CLKO. If the System Clock Prescaler is used, it is the divided system clock that is
output.

The device can operate its Timer/Counter2 from an external 32.768 kHz watch crystal or
a external clock source. See Figure 21 on page 40 for crystal connection.

Applying an external clock source to TOSC1 requires EXCLK in the ASSR Register writ-
ten to logic one. See “Asynchronous Operation of Timer/Counter2” on page 188 for
further description on selecting external clock as input instead of a 32 kHz crystal.
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The ATmega640/1280/1281/2560/2561 has a system clock prescaler, and the system
clock can be divided by setting the “CLKPR — Clock Prescale Register” on page 48. This
feature can be used to decrease the system clock frequency and the power consump-
tion when the requirement for processing power is low. This can be used with all clock
source options, and it will affect the clock frequency of the CPU and all synchronous
peripherals. clk;,q, Clkapc, Clkepy, and clkg sy are divided by a factor as shown in Table
283.

When switching between prescaler settings, the System Clock Prescaler ensures that
no glitches occurs in the clock system. It also ensures that no intermediate frequency is
higher than neither the clock frequency corresponding to the previous setting, nor the
clock frequency corresponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided
clock, which may be faster than the CPU's clock frequency. Hence, it is not possible to
determine the state of the prescaler - even if it were readable, and the exact time it takes
to switch from one clock division to the other cannot be exactly predicted. From the time
the CLKPS values are written, it takes between T1 + T2 and T1 + 2 * T2 before the new
clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is
the previous clock period, and T2 is the period corresponding to the new prescaler
setting.

To avoid unintentional changes of clock frequency, a special write procedure must be
followed to change the CLKPS bits:

1.  Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits
in CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to
CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write pro-
cedure is not interrupted.
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Bit 7 6 5 4 3 2 1 0

(0x66) | CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CALO I OSCCAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

¢ Bits 7:0 — CAL7:0: Oscillator Calibration Value

The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator
to remove process variations from the oscillator frequency. A pre-programmed calibra-
tion value is automatically written to this register during chip reset, giving the Factory
calibrated frequency as specified in Table 172 on page 384. The application software
can write this register to change the oscillator frequency. The oscillator can be calibrated
to frequencies as specified in Table 172 on page 384. Calibration outside that range is
not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these
write times will be affected accordingly. If the EEPROM or Flash are written, do not cali-
brate to more than 8.8 MHz. Otherwise, the EEPROM or Flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0
gives the lowest frequency range, setting this bit to 1 gives the highest frequency range.
The two frequency ranges are overlapping, in other words a setting of OSCCAL = 0x7F
gives a higher frequency than OSCCAL = 0x80.

The CALSG..0 bits are used to tune the frequency within the selected range. A setting of
0x00 gives the lowest frequency in that range, and a setting of 0x7F gives the highest
frequency in the range.

Bit 7 6 5 4 3 2 1 0

(0x61) | CLKPCE - - - CLKPS3 | CLKPS2 | CLKPS1 | CLKPSO | CLKPR
Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

e Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The
CLKPCE bit is only updated when the other bits in CLKPR are simultaneously written to
zero. CLKPCE is cleared by hardware four cycles after it is written or when CLKPS bits
are written. Rewriting the CLKPCE bit within this time-out period does neither extend the
time-out period, nor clear the CLKPCE bit.

¢ Bits 3:0 — CLKPS3:0: Clock Prescaler Select Bits 3-0

These bits define the division factor between the selected clock source and the internal
system clock. These bits can be written run-time to vary the clock frequency to suit the
application requirements. As the divider divides the master clock input to the MCU, the
speed of all synchronous peripherals is reduced when a division factor is used. The divi-
sion factors are given in Table 23.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unpro-
grammed, the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits
are reset to “0011”, giving a division factor of 8 at start up. This feature should be used if
the selected clock source has a higher frequency than the maximum frequency of the
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device at the present operating conditions. Note that any value can be written to the
CLKPS bits regardless of the CKDIV8 Fuse setting. The Application software must
ensure that a sufficient division factor is chosen if the selected clock source has a higher
frequency than the maximum frequency of the device at the present operating condi-
tions. The device is shipped with the CKDIV8 Fuse programmed.

Table 23. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPSO Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved
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Sleep modes enable the application to shut down unused modules in the MCU, thereby
saving power. The AVR provides various sleep modes allowing the user to tailor the
power consumption to the application’s requirements.

Figure 20 on page 37 presents the different clock systems in the
ATmega640/1280/1281/2560/2561, and their distribution. The figure is helpful in select-
ing an appropriate sleep mode. Table 24 shows the different sleep modes and their
wake-up sources.

Table 24. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources
>
s =
a )
5. 8. P £ : JE
> ‘Z’ o ~| O 8 3 9 3 g £ § = o o £ =
5 2 o & % =58 g8 r£¢ =g s =z ) e 8
X X K3 3 3 -
Sleep Mode 3 % 3 3 T|285 £5 z& E=2 £ & 2 = 3
Idle X X p X X X X X X
ADCNRM X X X p X@ X p X X X
Power-down X® X X
Power-save X X®@ X® X X X
Standby(" X X® X X
Extended Standby X@ X X@ X® X X X

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If Timer/Counter2 is running in asynchronous mode.
3. For INT7:4, only level interrupt.

To enter any of the sleep modes, the SE bit in “SMCR — Sleep Mode Control Register”
on page 54 must be written to logic one and a SLEEP instruction must be executed. The
SM2, SM1, and SMO bits in the SMCR Register select which sleep mode will be acti-
vated by the SLEEP instruction. See Table 25 on page 54 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up.
The MCU is then halted for four cycles in addition to the start-up time, executes the
interrupt routine, and resumes execution from the instruction following SLEEP. The con-
tents of the Register File and SRAM are unaltered when the device wakes up from
sleep. If a reset occurs during sleep mode, the MCU wakes up and executes from the
Reset Vector.
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Idle Mode When the SM2:0 bits are written to 000, the SLEEP instruction makes the MCU enter
Idle mode, stopping the CPU but allowing the SPI, USART, Analog Comparator, ADC,
2-wire Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue
operating. This sleep mode basically halts clkg;p and clkg agy, While allowing the other
clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as
internal ones like the Timer Overflow and USART Transmit Complete interrupts. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD bit in the Analog Comparator Control and Sta-
tus Register — ACSR. This will reduce power consumption in Idle mode. If the ADC is
enabled, a conversion starts automatically when this mode is entered.

ADC Noise Reduction When the SM2:0 bits are written to 001, the SLEEP instruction makes the MCU enter

Mode ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the external inter-
rupts, 2-wire Serial Interface address match, Timer/Counter2 and the Watchdog to
continue operating (if enabled). This sleep mode basically halts clkl/O, clkCPU, and clk-
FLASH, while allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measure-
ments. If the ADC is enabled, a conversion starts automatically when this mode is
entered. Apart form the ADC Conversion Complete interrupt, only an External Reset, a
Watchdog System Reset, a Watchdog interrupt, a Brown-out Reset, a 2-wire serial inter-
face interrupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an
external level interrupt on INT7:4 or a pin change interrupt can wakeup the MCU from
ADC Noise Reduction mode.

Power-down Mode When the SM2:0 bits are written to 010, the SLEEP instruction makes the MCU enter
Power-down mode. In this mode, the external Oscillator is stopped, while the external
interrupts, the 2-wire Serial Interface, and the Watchdog continue operating (if enabled).
Only an External Reset, a Watchdog Reset, a Brown-out Reset, 2-wire Serial Interface
address match, an external level interrupt on INT7:4, an external interrupt on INT3:0, or
a pin change interrupt can wake up the MCU. This sleep mode basically halts all gener-
ated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. Refer to “External Inter-
rupts” on page 77 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition
occurs until the wake-up becomes effective. This allows the clock to restart and become
stable after having been stopped. The wake-up period is defined by the same CKSEL
Fuses that define the Reset Time-out period, as described in “Clock Sources” on page
39.

Power-save Mode When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter
Power-save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up
from either Timer Overflow or Output Compare event from Timer/Counter2 if the corre-
sponding Timer/Counter2 interrupt enable bits are set in TIMSK2, and the Global
Interrupt Enable bit in SREG is set.

If Timer/Counter2 is not running, Power-down mode is recommended instead of Power-
save mode.

ATMEL s
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The Timer/Counter2 can be clocked both synchronously and asynchronously in Power-
save mode. If the Timer/Counter2 is not using the asynchronous clock, the
Timer/Counter Oscillator is stopped during sleep. If the Timer/Counter2 is not using the
synchronous clock, the clock source is stopped during sleep. Note that even if the syn-
chronous clock is running in Power-save, this clock is only available for the
Timer/Counter2.

When the SM2:0 bits are 110 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to
Power-down with the exception that the Oscillator is kept running. From Standby mode,
the device wakes up in six clock cycles.

When the SM2:0 bits are 111 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Extended Standby mode. This mode is
identical to Power-save mode with the exception that the Oscillator is kept running.
From Extended Standby mode, the device wakes up in six clock cycles.Power Reduc-
tion Register

The Power Reduction Register (PRR), see “PRRO — Power Reduction Register 0” on
page 55 and “PRR1 — Power Reduction Register 1” on page 56, provides a method to
stop the clock to individual peripherals to reduce power consumption. The current state
of the peripheral is frozen and the I/O registers can not be read or written. Resources
used by the peripheral when stopping the clock will remain occupied, hence the periph-
eral should in most cases be disabled before stopping the clock. Waking up a module,
which is done by clearing the bit in PRR, puts the module in the same state as before
shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the
overall power consumption. See “Supply Current of 10 modules” on page 395 for exam-
ples. In all other sleep modes, the clock is already stopped.

There are several issues to consider when trying to minimize the power consumption in
an AVR controlled system. In general, sleep modes should be used as much as possi-
ble, and the sleep mode should be selected so that as few as possible of the device’s
functions are operating. All functions not needed should be disabled. In particular, the
following modules may need special consideration when trying to achieve the lowest
possible power consumption.

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should
be disabled before entering any sleep mode. When the ADC is turned off and on again,
the next conversion will be an extended conversion. Refer to “ADC — Analog to Digital
Converter” on page 279 for details on ADC operation.

When entering Idle mode, the Analog Comparator should be disabled if not used. When
entering ADC Noise Reduction mode, the Analog Comparator should be disabled. In
other sleep modes, the Analog Comparator is automatically disabled. However, if the
Analog Comparator is set up to use the Internal Voltage Reference as input, the Analog
Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Ref-
erence will be enabled, independent of sleep mode. Refer to “AC — Analog Comparator”
on page 275 for details on how to configure the Analog Comparator.
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If the Brown-out Detector is not needed by the application, this module should be turned
off. If the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in
all sleep modes, and hence, always consume power. In the deeper sleep modes, this
will contribute significantly to the total current consumption. Refer to “Brown-out Detec-
tion” on page 60 for details on how to configure the Brown-out Detector.

The Internal Voltage Reference will be enabled when needed by the Brown-out Detec-
tion, the Analog Comparator or the ADC. If these modules are disabled as described in
the sections above, the internal voltage reference will be disabled and it will not be con-
suming power. When turned on again, the user must allow the reference to start up
before the output is used. If the reference is kept on in sleep mode, the output can be
used immediately. Refer to “Internal Voltage Reference” on page 61 for details on the
start-up time.

If the Watchdog Timer is not needed in the application, the module should be turned off.
If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence,
always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Interrupts” on page 69 for details on how to con-
figure the Watchdog Timer.

When entering a sleep mode, all port pins should be configured to use minimum power.
The most important is then to ensure that no pins drive resistive loads. In sleep modes
where both the 1/0O clock (clk,) and the ADC clock (clkapc) are stopped, the input buff-
ers of the device will be disabled. This ensures that no power is consumed by the input
logic when not needed. In some cases, the input logic is needed for detecting wake-up
conditions, and it will then be enabled. Refer to the section “Digital Input Enable and
Sleep Modes” on page 87 for details on which pins are enabled. If the input buffer is
enabled and the input signal is left floating or have an analog signal level close to V¢/2,
the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog
signal level close to Vc/2 on an input pin can cause significant current even in active
mode. Digital input buffers can be disabled by writing to the Digital Input Disable Regis-
ters (DIDR2, DIDR1 and DIDRO). Refer to “DIDR2 — Digital Input Disable Register 2” on
page 300, “DIDR1 — Digital Input Disable Register 1” on page 278 and “DIDRO — Digital
Input Disable Register 0” on page 300 for details.

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enters sleep
mode, the main clock source is enabled, and hence, always consumes power. In the
deeper sleep modes, this will contribute significantly to the total current consumption.
There are three alternative ways to disable the OCD system:

¢ Disable the OCDEN Fuse.

e Disable the JTAGEN Fuse.

e Write one to the JTD bit in MCUCR.
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SMCR - Sleep Mode Control
Register
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The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
o33xs3) | - | - | - | - | sm2 | smi | smo | s | smcr
Read/Write R R R R RIW RIW R/W RW

Initial Value 0 0 0 0 0 0 0 0

e Bits 3, 2, 1 — SM2:0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the five available sleep modes as shown in Table 25.

Table 25. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby®
1 1 1 Extended Standby!"

Note: 1. Standby modes are only recommended for use with external crystals or resonators.

e Bit 1 - SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmer’s purpose, it is recommended to write the Sleep Enable (SE) bit to one
just before the execution of the SLEEP instruction and to clear it immediately after wak-

ing up.
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Bit 7 6 5 4 3 2 1 0
(0x64) | PRTWI | PRTIM2 | PRTIMO | - | PRTIM1 PRSPl | PRUSARTO | PRADC | PRRO
Read/Write R/W R/W R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 - PRTWI: Power Reduction TWI

Writing a logic one to this bit shuts down the TWI by stopping the clock to the module.
When waking up the TWI again, the TWI should be re initialized to ensure proper
operation.

¢ Bit 6 - PRTIM2: Power Reduction Timer/Counter2
Writing a logic one to this bit shuts down the Timer/Counter2 module in synchronous

mode (AS2 is 0). When the Timer/Counter2 is enabled, operation will continue like
before the shutdown.

¢ Bit 5 - PRTIMO: Power Reduction Timer/Counter0

Writing a logic one to this bit shuts down the Timer/Counter0 module. When the
Timer/Counter0 is enabled, operation will continue like before the shutdown.

¢ Bit 4 - Res: Reserved bit

This bit is reserved bit and will always read as zero.

e Bit 3 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the
Timer/Counter1 is enabled, operation will continue like before the shutdown.

¢ Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the

clock to the module. When waking up the SPI again, the SPI should be re initialized to
ensure proper operation.

* Bit 1 - PRUSARTO: Power Reduction USARTO

Writing a logic one to this bit shuts down the USARTO by stopping the clock to the mod-
ule. When waking up the USARTO again, the USARTO should be re initialized to ensure
proper operation.

¢ Bit 0 - PRADC: Power Reduction ADC

Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before
shut down. The analog comparator cannot use the ADC input MUX when the ADC is
shut down.
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Bit 7 6 5 4 3 2 1 0
(0x65) I - | - | PRTIM5 | PRTIM4 | PRTIM3 | PRUSART3 | PRUSART2 | PRUSART1 | PRR1
Read/Write R R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7:6 - Res: Reserved bits

These bits are reserved and will always read as zero.
e Bit 5 - PRTIM5: Power Reduction Timer/Counter5

Writing a logic one to this bit shuts down the Timer/Counter5 module. When the
Timer/Counter5 is enabled, operation will continue like before the shutdown.

¢ Bit 4 - PRTIM4: Power Reduction Timer/Counter4

Writing a logic one to this bit shuts down the Timer/Counter4 module. When the
Timer/Counter4 is enabled, operation will continue like before the shutdown.

¢ Bit 3 - PRTIM3: Power Reduction Timer/Counter3

Writing a logic one to this bit shuts down the Timer/Counter3 module. When the
Timer/Counter3 is enabled, operation will continue like before the shutdown.

* Bit 2 - PRUSART3: Power Reduction USART3

Writing a logic one to this bit shuts down the USARTS3 by stopping the clock to the mod-
ule. When waking up the USART3 again, the USART3 should be re initialized to ensure
proper operation.

¢ Bit 1 - PRUSART2: Power Reduction USART2

Writing a logic one to this bit shuts down the USART2 by stopping the clock to the mod-
ule. When waking up the USART2 again, the USART2 should be re initialized to ensure
proper operation.

e Bit 0 - PRUSART1: Power Reduction USART1
Writing a logic one to this bit shuts down the USART1 by stopping the clock to the mod-

ule. When waking up the USART1 again, the USART1 should be re initialized to ensure
proper operation.
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During reset, all I/O Registers are set to their initial values, and the program starts exe-
cution from the Reset Vector. The instruction placed at the Reset Vector must be a JMP
— Absolute Jump — instruction to the reset handling routine. If the program never
enables an interrupt source, the Interrupt Vectors are not used, and regular program
code can be placed at these locations. This is also the case if the Reset Vector is in the
Application section while the Interrupt Vectors are in the Boot section or vice versa. The
circuit diagram in Figure 24 shows the reset logic. Table 26 defines the electrical param-
eters of the reset circuitry.

The 1/O ports of the AVR are immediately reset to their initial state when a reset source
goes active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the
internal reset. This allows the power to reach a stable level before normal operation
starts. The time-out period of the delay counter is defined by the user through the SUT
and CKSEL Fuses. The different selections for the delay period are presented in “Clock
Sources” on page 39.

The ATmega640/1280/1281/2560/2561 has five sources of reset:

* Power-on Reset. The MCU is reset when the supply voltage is below the Power-on
Reset threshold (Vpgr).

¢ External Reset. The MCU is reset when a low level is present on the RESET pin for
longer than the minimum pulse length.

¢ Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and
the Watchdog is enabled.

e Brown-out Reset. The MCU is reset when the supply voltage V¢ is below the
Brown-out Reset threshold (Vzgr) and the Brown-out Detector is enabled.

e JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset
Register, one of the scan chains of the JTAG system. Refer to the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 308 for details.
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Figure 24. Reset Logic
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Table 26. Reset Characteristics'"
Symbol | Parameter Condition Min | Typ | Max | Units
Power-on_R_eset Threshold 18D | TBD | TBD v
Voltage (rising)
Veor Power-on Reset Threshold
Voltage (falling)® TBD | TBD | TBD |V
VRst RESET Pin Threshold Voltage TBD | TBD | TBD \
tast I\P/Iil:lmum pulse width on RESET 18D | TBD | TBD ns

Notes: 1. Values are guidelines only. Actual values are TBD.
2. The Power-on Reset will not work unless the supply voltage has been below Vpgr
(falling)

Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-
tion level is defined in Table 26. The POR is activated whenever V. is below the
detection level. The POR circuit can be used to trigger the start-up Reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reach-
ing the Power-on Reset threshold voltage invokes the delay counter, which determines
how long the device is kept in RESET after V. rise. The RESET signal is activated
again, without any delay, when V; decreases below the detection level.
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Figure 25.
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External Reset An External Reset is generated by a low level on the RESET pin. Reset pulses longer

than the minimum pulse width (see Table 26) will generate a reset, even if the clock is
not running. Shorter pulses are not guaranteed to generate a reset. When the applied
signal reaches the Reset Threshold Voltage — Vzgr — on its positive edge, the delay

counter starts the MCU after the Time-out period — t;o 7t —has expired.

Figure 27. External Reset During Operation
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ATmega640/1280/1281/2560/2561 has an On-chip Brown-out Detection (BOD) circuit

for monitoring the V¢ level during operation by comparing it to a fixed trigger level. The
trigger level for the BOD can be selected by the BODLEVEL Fuses. The trigger level
has a hysteresis to ensure spike free Brown-out Detection. The hysteresis on the detec-
tion level should be interpreted as Vggr, = Vot + Viyst/2 and Vgor. = Veort - Viyst/2-

Table 27. BODLEVEL Fuse Coding"

BODLEVEL 2:0 Fuses Min Vgor Typ Veor Max Vgor Units
111 BOD Disabled
110 1.7 1.8 2.0
101 25 2.7 2.9 \
100 41 4.3 4.5
011
010
Reserved
001
000
Note: 1. Vgor may be below nominal minimum operating voltage for some devices. For

devices where this is the case, the device is tested down to Voo = Vgor during the
production test. This guarantees that a Brown-Out Reset will occur before V¢ drops
to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL =110 for 4 MHz operation of
ATmega640V/1280V/1281V/2560V/2561V, BODLEVEL = 101 for 8 MHz operation of
ATmega640Vv/1280V/1281V/2560V/2561V  and  ATmega640/1280/1281, and
BODLEVEL = 100 for 16 MHz operation of ATmega640/1280/1281/2560/2561.

Table 28. Brown-out Characteristics
Symbol Parameter Min Typ Max Units
Vhyst Brown-out Detector Hysteresis 50 mV
tzop Min Pulse Width on Brown-out Reset ns

When the BOD is enabled, and V¢ decreases to a value below the trigger level (Vgor.
in Figure 28), the Brown-out Reset is immediately activated. When V. increases above
the trigger level (Vgor, in Figure 28), the delay counter starts the MCU after the Time-
out period tyoyt has expired.

The BOD circuit will only detect a drop in V if the voltage stays below the trigger level
for longer than tzop given in Table 26.

Figure 28. Brown-out Reset During Operation
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Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of one CK cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
trout- See “Watchdog Timer” on page 53. for details on operation of the Watchdog
Timer.

Figure 29. Watchdog Reset During Operation
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Internal Voltage ATmega640/1280/1281/2560/2561 features an internal bandgap reference. This refer-

Reference ence is used for Brown-out Detection, and it can be used as an input to the Analog
Comparator or the ADC.

Voltage Reference Enable The voltage reference has a start-up time that may influence the way it should be used.

Signals and Start-up Time The start-up time is given in Table 29. To save power, the reference is not always turned

on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting
the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the
user must always allow the reference to start up before the output from the Analog Com-
parator or ADC is used. To reduce power consumption in Power-down mode, the user
can avoid the three conditions above to ensure that the reference is turned off before
entering Power-down mode.

Table 29. Internal Voltage Reference Characteristics(")

Symbol | Parameter Condition | Min | Typ | Max | Units
Via Bandgap reference voltage TBD TBD | 1.1 | TBD \Y
tag Bandgap reference start-up time TBD 40 70 ps

Bandgap reference current

Iz consumption TBD 10 | TBD pA

Note: 1. Values are guidelines only. Actual values are TBD.

ATMEL o
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ATmega640/1280/1281/2560/2561 has an Enhanced Watchdog Timer (WDT). The
main features are:

¢ Clocked from separate On-chip Oscillator
¢ 3 Operating modes
— Interrupt
— System Reset
— Interrupt and System Reset
* Selectable Time-out period from 16ms to 8s
* Possible Hardware fuse Watchdog always on (WDTON) for fail-safe mode

Figure 30. Watchdog Timer
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The Watchdog Timer (WDT) is a timer counting cycles of a separate on-chip 128 kHz
oscillator. The WDT gives an interrupt or a system reset when the counter reaches a
given time-out value. In normal operation mode, it is required that the system uses the
WDR - Watchdog Timer Reset - instruction to restart the counter before the time-out
value is reached. If the system doesn't restart the counter, an interrupt or system reset
will be issued.

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can
be used to wake the device from sleep-modes, and also as a general system timer. One
example is to limit the maximum time allowed for certain operations, giving an interrupt
when the operation has run longer than expected. In System Reset mode, the WDT
gives a reset when the timer expires. This is typically used to prevent system hang-up in
case of runaway code. The third mode, Interrupt and System Reset mode, combines the
other two modes by first giving an interrupt and then switch to System Reset mode. This
mode will for instance allow a safe shutdown by saving critical parameters before a sys-
tem reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer
to System Reset mode. With the fuse programmed the System Reset mode bit (WDE)
and Interrupt mode bit (WDIE) are locked to 1 and 0 respectively. To further ensure pro-
gram security, alterations to the Watchdog set-up must follow timed sequences. The
sequence for clearing WDE and changing time-out configuration is as follows:
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1. In the same operation, write a logic one to the Watchdog change enable bit
(WDCE) and WDE. A logic one must be written to WDE regardless of the previ-
ous value of the WDE bit.

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits
(WDP) as desired, but with the WDCE bit cleared. This must be done in one

operation.
The following code example shows one assembly and one C function for turning off the

Watchdog Timer. The example assumes that interrupts are controlled (e.g. by disabling
interrupts globally) so that no interrupts will occur during the execution of these

functions.

ATMEL .
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Assembly Code Example("

WDT_off:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Clear WDRF in MCUSR
in rl6, MCUSR
andi rl6, (O0xff & (0O<<WDRF))
out MCUSR, rlé6
; Write logical one to WDCE and WDE
; Keep o0ld prescaler setting to prevent unintentional time-out
1di r16, WDTCSR
ori rl6, (1<<WDCE) | (1l<<WDE)
sts WDTCSR, rlé6
; Turn off WDT
1di rl6, (O<<WDE)
sts WDTCSR, rlé6
; Turn on global interrupt
sei

ret
C Code Example"

void WDT_off (void)
{

_ disable_interrupt() ;

_ _watchdog_reset () ;

/* Clear WDRF in MCUSR */

MCUSR &= ~ (1<<WDRF) ;

/* Write logical one to WDCE and WDE */

/* Keep old prescaler setting to prevent unintentional time-out
*/

WDTCSR |= (1<<WDCE) | (1<<WDE) ;

/* Turn off WDT */

WDTCSR = 0x00;

_ _enable_interrupt() ;

Note: 1. The example code assumes that the part specific header file is included.

Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or
brown-out condition, the device will be reset and the Watchdog Timer will stay enabled.
If the code is not set up to handle the Watchdog, this might lead to an eternal loop of
time-out resets. To avoid this situation, the application software should always clear the
Watchdog System Reset Flag (WDRF) and the WDE control bit in the initialisation rou-
tine, even if the Watchdog is not in use.
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The following code example shows one assembly and one C function for changing the

time-out value of the Watchdog Timer.

Assembly Code Example("

WDT_Prescaler_Change:
; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Start timed sequence

in rl6, WDTCSR

ori rl6, (1<<WDCE) | (1<<WDE)

out WDTCSR, rlé6

-- Got four cycles to set the new values from here -

; Set new prescaler(time-out) value = 64K cycles (~0.5 s)

1di rl6, (1<<WDE) | (1<<WDP2) | (1l<<WDPO)

out WDTCSR, rl6

-- Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C Code Example"

void WDT_Prescaler_Change (void)
{

_ disable_interrupt() ;

_ _watchdog_reset () ;

/* Start timed equence */

WDTCSR |= (1<<WDCE) | (1<<WDE) ;
/* Set new prescaler (time-out) value = 64K cycles (~0.5 s)
WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDPO) ;

_ _enable_interrupt() ;

*/

Note: 1. The example code assumes that the part specific header file is included.

Note: The Watchdog Timer should be reset before any change of the WDP bits, since a
change in the WDP bits can result in a time-out when switching to a shorter time-out

period.
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MCUSR - MCU Status
Register

WDTCSR - Watchdog Timer
Control Register
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The MCU Status Register provides information on which reset source caused an MCU
reset.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) | - - JTRF WDRF BORF EXTRF PORF I MCUSR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

* Bit 4 — JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

¢ Bit 3 - WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

e Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

¢ Bit 1 — EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

e Bit 0 — PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to
the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and
then Reset the MCUSR as early as possible in the program. If the register is cleared
before another reset occurs, the source of the reset can be found by examining the
Reset Flags.

Bit 7 6 5 4 3 2 1 0
(0x60) I WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDPO I WDTCSR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 X 0 0 0

¢ Bit 7 - WDIF: Watchdog Interrupt Flag

This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is
configured for interrupt. WDIF is cleared by hardware when executing the corresponding
interrupt handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag.
When the I-bit in SREG and WDIE are set, the Watchdog Time-out Interrupt is
executed.

e Bit 6 - WDIE: Watchdog Interrupt Enable

When this bit is written to one and the I-bit in the Status Register is set, the Watchdog
Interrupt is enabled. If WDE is cleared in combination with this setting, the Watchdog

6 ATmega640/1280/1281/2560/2561 m————————
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Timer is in Interrupt Mode, and the corresponding interrupt is executed if time-out in the
Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first
time-out in the Watchdog Timer will set WDIF. Executing the corresponding interrupt
vector will clear WDIE and WDIF automatically by hardware (the Watchdog goes to Sys-
tem Reset Mode). This is useful for keeping the Watchdog Timer security while using
the interrupt. To stay in Interrupt and System Reset Mode, WDIE must be set after each
interrupt. This should however not be done within the interrupt service routine itself, as
this might compromise the safety-function of the Watchdog System Reset mode. If the
interrupt is not executed before the next time-out, a System Reset will be applied.

Table 30. Watchdog Timer Configuration

WDTON( WDE WDIE Mode Action on Time-out
1 0 0 Stopped None
1 0 1 Interrupt Mode Interrupt
1 1 0 System Reset Mode Reset
1 1 1 Interrupt and System Interrupt, then go to
Reset Mode System Reset Mode
0 X X System Reset Mode Reset

Note: 1. WDTON Fuse set to “0“ means programmed and “1” means unprogrammed.

e Bit 4 - WDCE: Watchdog Change Enable

This bit is used in timed sequences for changing WDE and prescaler bits. To clear the
WDE bit, and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

e Bit 3 - WDE: Watchdog System Reset Enable

WDE is overridden by WDRF in MCUSR. This means that WDE is always set when
WDREF is set. To clear WDE, WDRF must be cleared first. This feature ensures multiple
resets during conditions causing failure, and a safe start-up after the failure.

e Bit 5, 2:0 - WDP3:0: Watchdog Timer Prescaler 3,2, 1 and 0

The WDP3:0 bits determine the Watchdog Timer prescaling when the Watchdog Timer
is running. The different prescaling values and their corresponding time-out periods are
shown in Table 31 on page 68.
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Table 31. Watchdog Timer Prescale Select

Number of WDT Oscillator

Typical Time-out at

WDP3 | WDP2 | WDP1 | WDPO Cycles Vee = 5.0V
0 0 0 0 2K (2048) cycles 16 ms
0 0 0 1 4K (4096) cycles 32 ms
0 0 1 0 8K (8192) cycles 64 ms
0 0 1 1 16K (16384) cycles 0.125s
0 1 0 0 32K (32768) cycles 0.25s
0 1 0 1 64K (65536) cycles 05s
0 1 1 0 128K (131072) cycles 10s
0 1 1 1 256K (262144) cycles 20s
1 0 0 0 512K (524288) cycles 40s
1 0 0 1 1024K (1048576) cycles 8.0s
1 0 1 0
1 0 1 1
1 1 0 0

Reserved
1 1 0 1
1 1 1 0

ATmega640/1280/1281/2560/2561 m———
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Interrupts This section describes the specifics of the interrupt handling as performed in
ATmega640/1280/1281/2560/2561. For a general explanation of the AVR interrupt han-
dling, refer to “Reset and Interrupt Handling” on page 17.

Interrupt Vectors in ATmega640/1280/1281/2560/2561

Table 32. Reset and Interrupt Vectors

Vector | Program
No. | Address® | Source Interrupt Definition
1 $0000(" RESET External Pin, Power-on Reset, Brown-out Reset,
Watchdog Reset, and JTAG AVR Reset
2 $0002 INTO External Interrupt Request 0
3 $0004 INTH External Interrupt Request 1
4 $0006 INT2 External Interrupt Request 2
5 $0008 INT3 External Interrupt Request 3
6 $000A INT4 External Interrupt Request 4
7 $000C INT5 External Interrupt Request 5
8 $000E INT6 External Interrupt Request 6
9 $0010 INT7 External Interrupt Request 7
10 $0012 PCINTO Pin Change Interrupt Request 0
11 $0014 PCINT1 Pin Change Interrupt Request 1
12 $0016®) PCINT2 Pin Change Interrupt Request 2
13 $0018 WDT Watchdog Time-out Interrupt
14 $001A TIMER2 COMPA | Timer/Counter2 Compare Match A
15 $001C TIMER2 COMPB | Timer/Counter2 Compare Match B
16 $001E TIMER2 OVF Timer/Counter2 Overflow
17 $0020 TIMER1 CAPT Timer/Counter1 Capture Event
18 $0022 TIMER1 COMPA | Timer/Counter1 Compare Match A
19 $0024 TIMER1 COMPB | Timer/Counter1 Compare Match B
20 $0026 TIMER1 COMPC | Timer/Counter1 Compare Match C
21 $0028 TIMER1 OVF Timer/Counter1 Overflow
22 $002A TIMERO COMPA | Timer/Counter0 Compare Match A
23 $002C TIMERO COMPB | Timer/Counter0 Compare match B
24 $002E TIMERO OVF Timer/Counter0 Overflow
25 $0030 SPI, STC SPI Serial Transfer Complete
26 $0032 USARTO RX USARTO Rx Complete
27 $0034 USARTO UDRE USARTO Data Register Empty
28 $0036 USARTO TX USARTO Tx Complete
29 $0038 ANALOG COMP | Analog Comparator
30 $003A ADC ADC Conversion Complete
31 $003C EE READY EEPROM Ready

ATMEL :
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Table 32. Reset and Interrupt Vectors (Continued)

Vector | Program

No. | Address® | Source Interrupt Definition
32 $003E TIMER3 CAPT Timer/Counter3 Capture Event
33 $0040 TIMER3 COMPA | Timer/Counter3 Compare Match A
34 $0042 TIMER3 COMPB | Timer/Counter3 Compare Match B
35 $0044 TIMER3 COMPC | Timer/Counter3 Compare Match C
36 $0046 TIMER3 OVF Timer/Counter3 Overflow
37 $0048 USART1 RX USART1 Rx Complete
38 $004A USART1 UDRE USART1 Data Register Empty
39 $004C USART1 TX USART1 Tx Complete
40 $004E TWI 2-wire Serial Interface
41 $0050 SPM READY Store Program Memory Ready
42 $0052® TIMER4 CAPT Timer/Counter4 Capture Event
43 $0054 TIMER4 COMPA | Timer/Counter4 Compare Match A
44 $0056 TIMER4 COMPB | Timer/Counter4 Compare Match B
45 $0058 TIMER4 COMPC | Timer/Counter4 Compare Match C
46 $005A TIMER4 OVF Timer/Counter4 Overflow
47 $005C® TIMERS CAPT Timer/Counter5 Capture Event
48 $005E TIMER5 COMPA | Timer/Counter5 Compare Match A
49 $0060 TIMER5 COMPB | Timer/Counter5 Compare Match B
50 $0062 TIMER5 COMPC | Timer/Counter5 Compare Match C
51 $0064 TIMER5 OVF Timer/Counter5 Overflow
52 $0066© USART2 RX USART2 Rx Complete
53 $0068® USART2 UDRE | USART2 Data Register Empty
54 $006A® USART2 TX USART2 Tx Complete
55 $006C® USART3 RX USART3 Rx Complete
56 $006E®) USART3 UDRE | USARTS3 Data Register Empty
57 $0070® USART3 TX USART3 Tx Complete

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader

address at reset, see “Memory Programming” on page 342.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of
the Boot Flash Section. The address of each Interrupt Vector will then be the address
in this table added to the start address of the Boot Flash Section.

3. Only available in ATmega640/1280/2560

ATmega640/1280/1281/2560/2561 m———
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Reset and Interrupt
Vector placement
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Table 33 on page 71 shows Reset and Interrupt Vectors placement for the various com-
binations of BOOTRST and IVSEL settings. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at
these locations. This is also the case if the Reset Vector is in the Application section
while the Interrupt Vectors are in the Boot section or vice versa.

Table 33. Reset and Interrupt Vectors Placement("

BOOTRST IVSEL | Reset Address Interrupt Vectors Start Address
1 0 0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: 1. The Boot Reset Address is shown in Table 140 on page 335 through Table 148 on
page 339. For the BOOTRST Fuse “1” means unprogrammed while “0” means
programmed.

The most typical and general program setup for the Reset and Interrupt Vector
Addresses in ATmega640/1280/1281/2560/2561 is:

Address Labels

0x0000
0x0002
0x0004
0x0006
0x0008
0x000A
0x000C
0x000E
0x0010
0x0012
0x0014
0x0016
0x0018
0x001A
0x001C
0x001E
0x0020
0x0022
0x0024
0x0026
0x0028
0x002A
0x002C
0x002E
0x0030
0x0032
0x0034
0x0036
0x0038
0x003A
0x003C
0x003E

Code

Jjmp RESET

Jjmp INTO

Jjmp INT1

Jjmp INT2

Jjmp INT3

Jjmp INT4

Jjmp INT5

Jjmp INT6

Jjmp INT7

Jjmp PCINTO

Jjmp PCINT1

Jjmp PCINT2

Jjmp WDT

jmp TIM2_COMPA
mp TIM2_COMPB
Jjmp TIM2_OVF
mp TIM1_CAPT
mp TIM1_COMPA
jmp TIM1_COMPB
Jjmp TIM1_COMPC
Jjmp TIM1_OVF
mp TIMO_COMPA
mp TIMO_COMPB
Jjmp TIMO_OVF
Jjmp SPI_STC
jmp USARTO_RXC
mp USARTO_UDRE
jmp USARTO_TXC
Jjmp ANA_COMP
Jjmp ADC

Jjmp EE_RDY

Fmp TIM3_CAPT

ATMEL

Comments

; Reset Handler

; IRQO Handler

; IRQ1 Handler

; IRQ2 Handler

; IRQ3 Handler

; IRQ4 Handler

; IRQ5 Handler

; IRQ6 Handler

; IRQ7 Handler

; PCINTO Handler

; PCINT1 Handler

; PCINT2 Handler

; Watchdog Timeout Handler

; Timer2 CompareA Handler

; Timer2 CompareB Handler

; Timer2 Overflow Handler

; Timerl Capture Handler

; Timerl CompareA Handler

; Timerl CompareB Handler

; Timerl CompareC Handler

; Timerl Overflow Handler

; Timer0 CompareA Handler

; Timer0 CompareB Handler

; TimerO Overflow Handler

; SPI Transfer Complete Handler
; USARTO RX Complete Handler
; USARTO,UDR Empty Handler

; USARTO TX Complete Handler
; Analog Comparator Handler
; ADC Conversion Complete Handler
; EEPROM Ready Handler

; Timer3 Capture Handler

71
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0x0040 Jjmp TIM3_COMPA ; Timer3 CompareA Handler
0x0042 Jjmp TIM3_COMPB ; Timer3 CompareB Handler
0x0044 Jjmp TIM3_COMPC ; Timer3 CompareC Handler
0x0046 Jjmp TIM3_OVF ; Timer3 Overflow Handler
0x0048 Jjmp USART1_RXC ; USART1 RX Complete Handler
0x004A Jjmp USART1_UDRE ; USART1,UDR Empty Handler
0x004C Jjmp USART1_TXC ; USART1 TX Complete Handler
0x004E Jjmp TWI ; 2-wire Serial Handler
0x0050 jmp SPM_RDY ; SPM Ready Handler

0x0052 Jjmp TIM4_CAPT ; Timer4 Capture Handler
0x0054 Jjmp TIM4_COMPA ; Timer4 CompareA Handler
0x0056 Jjmp TIM4_COMPB ; Timer4 CompareB Handler
0x0058 Jjmp TIM4_COMPC ; Timer4 CompareC Handler
0x005A Jjmp TIM4_OVF ; Timer4 Overflow Handler
0x005C Jjmp TIMS5_CAPT ; Timer5 Capture Handler
0x005E Jjmp TIM5_COMPA ; Timer5 CompareA Handler
0x0060 Jjmp TIM5_COMPB ; Timer5 CompareB Handler
0x0062 Jjmp TIM5_COMPC ; Timer5 CompareC Handler
0x0064 Jjmp TIM5_OVF ; Timer5 Overflow Handler
0x0066 Jjmp USART2_RXC ; USART2 RX Complete Handler
0x0068 Jjmp USART2_UDRE ; USART2,UDR Empty Handler
0x006A jmp USART2_TXC ; USART2 TX Complete Handler
0x006C jmp USART3_RXC ; USART3 RX Complete Handler
0x006E Jjmp USART3_UDRE ; USART3,UDR Empty Handler
0x0070 jmp USART3_TXC ; USART3 TX Complete Handler
0x0072 RESET: 1di rl6, high (RAMEND) ; Main program start

0x0073 out SPH, rl6 ; Set Stack Pointer to top of RAM
0x0074 1di rl6, low(RAMEND)

0x0075 out SPL,rl6

0x0076 sei ; Enable interrupts

0x0077 <instr> =xxx
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When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8K bytes and
the IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address
0x00000
0x00001
0x00002

0x00003
0x00004

0x00005

7

Labels Code

RESET: 1di r16,high (RAMEND)

out SPH, rl6
1di rl6, low (RAMEND)
out SPL,rl6

sei

<instr> xxx

.org 0x1F002

0x1F002
0x1F004

0x1FO070

Jmp EXT_INTO
jmp EXT_INT1
jmp USART3_TXC

Comments

7

7

7

7

7

Main program start

Set Stack Pointer to top of RAM

Enable interrupts

IRQ0 Handler
IRQ1 Handler

USART3 TX Complete Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 8K bytes, the
most typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code

.org 0x0002

0x00002 jmp EXT_INTO
0x00004 Jjmp EXT_INT1
0x00070 Jjmp USART3_TXC

7

.org 0x1F000

0x1F000
0x1F001
0x1F002

0x1F003
0x1F004

0x1F005

RESET: 1di r16,high (RAMEND)

out SPH, rl6
1di r1l6, low (RAMEND)
out SPL,rl6

sei

<instr> xxx

ATMEL

7

Comments

IRQ0 Handler
IRQ1l Handler

USART3 TX Complete Handler

Main program start

Set Stack Pointer to top of RAM

Enable interrupts
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When the BOOTRST Fuse is programmed, the Boot section size set to 8K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typ-
ical and general program setup for the Reset and Interrupt Vector Addresses is:

Address

7

Labels Code Comments

.org 0x1F000

0x1F000 Jjmp RESET ; Reset handler

0x1F002 Jjmp EXT_INTO ; IRQO Handler

0x1F004 Jjmp EXT_INT1 ; IRQ1 Handler

0x1F070 Jjmp USART3_TXC ; USART3 TX Complete Handler
0x1F072 RESET: 1di rl6,high (RAMEND) ; Main program start

0x1F073 out SPH,rl6 ; Set Stack Pointer to top of RAM
0x1F074 1di r1l6, low (RAMEND)

0x1FO075 out SPL,rl6

0x1F076 sei ; Enable interrupts

0x1FO077 <instr> xxx

Moving Interrupts

The MCU Control Register controls the placement of the Interrupt Vector table, see

Between Application and Code Example below. For more details, see “Reset and Interrupt Handling” on page 17.

Boot Section

Assembly Code Example

Move_interrupts:

; Get MCUCR
in rl6, MCUCR
mov rl7, rlé6

; Enable change of Interrupt Vectors
ori rle6,

out MCUCR,

(1<<IVCE)

rle

; Move interrupts to Boot Flash section
rlé,
out MCUCR,

(1<<IVSEL)
rl7

ori

ret

C Code Example

{

void Move_interrupts (void)

uchar temp;

/*
temp =

Get MCUCR*/

MCUCR;

/* Enable change of Interrupt Vectors */
MCUCR = temp| (1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR = temp| (1<<IVSEL) ;

74
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Register Description

MCUCR - MCU Control
Register

ATMEL

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) | JTD = = PUD = = IVSEL IVCE | mcucr
Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the
Flash memory. When this bit is set (one), the Interrupt Vectors are moved to the begin-
ning of the Boot Loader section of the Flash. The actual address of the start of the Boot
Flash Section is determined by the BOOTSZ Fuses. Refer to the section “Memory Pro-
gramming” on page 342 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit (see “Moving
Interrupts Between Application and Boot Section” on page 74):

1.  Write the Interrupt Vector Change Enable (IVCE) bit to one.

2. Within four cycles, write the desired value to IVSEL while writing a zero to
IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are
disabled in the cycle IVCE is set, and they remain disabled until after the instruction fol-
lowing the write to IVSEL. If IVSEL is not written, interrupts remain disabled for four
cycles. The I-bit in the Status Register is unaffected by the automatic disabling.

Note:  If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLBO2 is pro-
grammed, interrupts are disabled while executing from the Application section. If
Interrupt Vectors are placed in the Application section and Boot Lock bit BLB12 is pro-
gramed, interrupts are disabled while executing from the Boot Loader section. Refer to
the section “Memory Programming” on page 342 for details on Boot Lock bits.

e Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is
cleared by hardware four cycles after it is written or when IVSEL is written. Setting the
IVCE bit will disable interrupts, as explained in the IVSEL description.

7 ATmega640/1280/1281/2560/2561 m—————
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External Interrupts

Pin Change Interrupt
Timing
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The External Interrupts are triggered by the INT7:0 pin or any of the PCINT23:0 pins.
Observe that, if enabled, the interrupts will trigger even if the INT7:0 or PCINT23:0 pins
are configured as outputs. This feature provides a way of generating a software
interrupt.

The Pin change interrupt PCI2 will trigger if any enabled PCINT23:16 pin toggles, Pin
change interrupt PCI1 if any enabled PCINT15:8 toggles and Pin change interrupts
PCIO0 will trigger if any enabled PCINT7:0 pin toggles. PCMSK2, PCMSK1 and PCMSKO
Registers control which pins contribute to the pin change interrupts. Pin change inter-
rupts on PCINT23 :0 are detected asynchronously. This implies that these interrupts can
be used for waking the part also from sleep modes other than Idle mode.

The External Interrupts can be triggered by a falling or rising edge or a low level. This is
set up as indicated in the specification for the External Interrupt Control Registers —
EICRA (INT3:0) and EICRB (INT7:4). When the external interrupt is enabled and is con-
figured as level triggered, the interrupt will trigger as long as the pin is held low. Note
that recognition of falling or rising edge interrupts on INT7:4 requires the presence of an
I/0 clock, described in “Overview” on page 37. Low level interrupts and the edge inter-
rupt on INT3:0 are detected asynchronously. This implies that these interrupts can be
used for waking the part also from sleep modes other than Idle mode. The I/O clock is
halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the
required level must be held long enough for the MCU to complete the wake-up to trigger
the level interrupt. If the level disappears before the end of the Start-up Time, the MCU
will still wake up, but no interrupt will be generated. The start-up time is defined by the
SUT and CKSEL Fuses as described in “System Clock and Clock Options” on page 37.

An example of timing of a pin change interrupt is shown in Figure 31.

Figure 31. Normal pin change interrupt.

pin_lat pcint_in_(0) _ .
PCINT(0) D Q 0 pcint_syn pcint_setflag
LE D pin_sync : PCIF
clk X b 3 b

PCINT(0) in PCMSK(x) ~ clk

I |

clk

PCINT(n)

pin_lat

pin_sync

pcint_in_(n) _l_rl

[ 1]

pcint_syn

pcint_setflag

PCIF
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Register Description

EICRA — External Interrupt
Control Register A

ATMEL

The External Interrupt Control Register A contains control bits for interrupt sense
control.

Bit 7 6 5 4 3 2 1 0

(0x69) I ISC31 ISC30 ISC21 1ISC20 ISC11 ISC10 ISCo1 ISCo0 I EICRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 7:0 - ISC31, ISC30 - ISC00, ISC00: External Interrupt 3 - 0 Sense Control
Bits

The External Interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag
and the corresponding interrupt mask in the EIMSK is set. The level and edges on the
external pins that activate the interrupts are defined in Table 34. Edges on INT3:0 are
registered asynchronously. Pulses on INT3:0 pins wider than the minimum pulse width
given in Table 35 will generate an interrupt. Shorter pulses are not guaranteed to gener-
ate an interrupt. If low level interrupt is selected, the low level must be held until the
completion of the currently executing instruction to generate an interrupt. If enabled, a
level triggered interrupt will generate an interrupt request as long as the pin is held low.
When changing the ISCn bit, an interrupt can occur. Therefore, it is recommended to
first disable INTn by clearing its Interrupt Enable bit in the EIMSK Register. Then, the
ISCn bit can be changed. Finally, the INTn interrupt flag should be cleared by writing a
logical one to its Interrupt Flag bit (INTFn) in the EIFR Register before the interrupt is re-
enabled.

Table 34. Interrupt Sense Control"

ISCn1 | ISCn0 | Description
0 0 The low level of INTn generates an interrupt request.
0 1 Any edge of INTn generates asynchronously an interrupt request.
1 0 The falling edge of INTn generates asynchronously an interrupt request.
1 1 The rising edge of INTn generates asynchronously an interrupt request.

Note: 1. n=3,2,1or0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its
Interrupt Enable bit in the EIMSK Register. Otherwise an interrupt can occur when
the bits are changed.

Table 35. Asynchronous External Interrupt Characteristics

Symbol | Parameter Condition | Min | Typ | Max | Units
Minimum pulse width for
tNT . 50 ns
asynchronous external interrupt

s ATmega640/1280/1281/2560/2561 m————
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EICRB - External Interrupt

Control Register B Bit 7 6 5 4 3 5 1 0
(Ox6A) I ISC71 ISC70 ISCé61 1ISC60 ISC51 ISC50 ISC41 ISC40 I EICRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7:0 - ISC71, ISC70 - ISC41, ISC40: External Interrupt 7 - 4 Sense Control
Bits

The External Interrupts 7 - 4 are activated by the external pins INT7:4 if the SREG I-flag
and the corresponding interrupt mask in the EIMSK is set. The level and edges on the
external pins that activate the interrupts are defined in Table 36. The value on the
INT7:4 pins are sampled before detecting edges. If edge or toggle interrupt is selected,
pulses that last longer than one clock period will generate an interrupt. Shorter pulses
are not guaranteed to generate an interrupt. Observe that CPU clock frequency can be
lower than the XTAL frequency if the XTAL divider is enabled. If low level interrupt is
selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an
interrupt request as long as the pin is held low.

Table 36. Interrupt Sense Control"

ISCn1 | ISCn0 | Description

0 0 The low level of INTn generates an interrupt request.

0 1 Any logical change on INTn generates an interrupt request

1 0 The falling edge between two samples of INTn generates an interrupt
request.

1 1 The rising edge between two samples of INTn generates an interrupt

request.

Note: 1. n=7,6,50r4.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its
Interrupt Enable bit in the EIMSK Register. Otherwise an interrupt can occur when
the bits are changed.

EIMSK - External Interrupt

Mask Register Bit 7 6 5 4 3 2 1 0
ox1D (0x3D) [ INT7 INT6 INT5 INT4 INT3 INT2 INTA INTO | EIMSK
Read/Write RIW RIW RW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:0 — INT7:0: External Interrupt Request 7 - 0 Enable

When an INT7:0 bit is written to one and the I-bit in the Status Register (SREG) is set
(one), the corresponding external pin interrupt is enabled. The Interrupt Sense Control
bits in the External Interrupt Control Registers — EICRA and EICRB — defines whether
the external interrupt is activated on rising or falling edge or level sensed. Activity on any
of these pins will trigger an interrupt request even if the pin is enabled as an output. This
provides a way of generating a software interrupt.

ATMEL 7
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EIFR — External Interrupt Flag
Register

PCICR - Pin Change Interrupt
Control Register

ATMEL

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) I INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 IINTFO I EIFR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:0 — INTF7:0: External Interrupt Flags 7 - 0

When an edge or logic change on the INT7:0 pin triggers an interrupt request, INTF7:0
becomes set (one). If the I-bit in SREG and the corresponding interrupt enable bit,
INT7:0 in EIMSK, are set (one), the MCU will jump to the interrupt vector. The flag is
cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by
writing a logical one to it. These flags are always cleared when INT7:0 are configured as
level interrupt. Note that when entering sleep mode with the INT3:0 interrupts disabled,
the input buffers on these pins will be disabled. This may cause a logic change in inter-
nal signals which will set the INTF3:0 flags. See “Digital Input Enable and Sleep Modes”
on page 87 for more information.

Bit 7 6 5 4 3 2 1 0

(0x68) | - = = = = PCIE2 | PCIE1 | PCIEO | PCICR
Read/Write R R R R R RIW RIW RW

Initial Value 0 0 0 0 0 0 0 0

e Bit 2 — PCIE2: Pin Change Interrupt Enable 1

When the PCIE2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
pin change interrupt 2 is enabled. Any change on any enabled PCINT23:16 pin will
cause an interrupt. The corresponding interrupt of Pin Change Interrupt Request is exe-
cuted from the PCI2 Interrupt Vector. PCINT23:16 pins are enabled individually by the
PCMSK2 Register.

e Bit 1 — PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
pin change interrupt 1 is enabled. Any change on any enabled PCINT15:8 pin will cause
an interrupt. The corresponding interrupt of Pin Change Interrupt Request is executed
from the PCI1 Interrupt Vector. PCINT15:8 pins are enabled individually by the PCMSK1
Register.

e Bit 0 — PCIEO: Pin Change Interrupt Enable 0

When the PCIEO bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
pin change interrupt 0 is enabled. Any change on any enabled PCINT7:0 pin will cause
an interrupt. The corresponding interrupt of Pin Change Interrupt Request is executed
from the PCIO Interrupt Vector. PCINT7:0 pins are enabled individually by the PCMSKO0
Register.
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PCIFR - Pin Change Interrupt

Flag Register Bit 7 6 5 4 3 2 1 0
oxiB(0x38) | - = = = = PCIF2 PCIF1 PCIF0 | PCIFR
Read/Write R R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 2 — PCIF2: Pin Change Interrupt Flag 1

When a logic change on any PCINT23:16 pin triggers an interrupt request, PCIF2
becomes set (one). If the I-bit in SREG and the PCIE2 bit in PCICR are set (one), the
MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the inter-
rupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to
it.

e Bit 1 — PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15:8 pin triggers an interrupt request, PCIF1
becomes set (one). If the I-bit in SREG and the PCIE1 bit in PCICR are set (one), the
MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the inter-
rupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to
it.

e Bit 0 — PCIFO: Pin Change Interrupt Flag 0

When a logic change on any PCINT7:0 pin triggers an interrupt request, PCIFO
becomes set (one). If the I-bit in SREG and the PCIEO bit in PCICR are set (one), the
MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the inter-
rupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to
it.

PCMSK2 - Pin Change Mask

Register 2 Bit 7 6 5 4 3 2 1 0
(0x6D) I PCINT23 | PCINT22 | PCINT21 PCINT20 | PCINT19 | PCINT18 | PCINT17 | PCINT16 I PCMSK2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 — PCINT23:16: Pin Change Enable Mask 23:16

Each PCINT23:16-bit selects whether pin change interrupt is enabled on the corre-
sponding I/O pin. If PCINT23:16 is set and the PCIE2 bit in PCICR is set, pin change
interrupt is enabled on the corresponding I/O pin. If PCINT23:16 is cleared, pin change
interrupt on the corresponding /O pin is disabled.

PCMSK1 — Pin Change Mask

Register 1 Bit 7 6 5 4 3 2 1 0
(0x6C) I PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 I PCMSK1
Read/Write R/W RIW R/W R/W R/W R/W RW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 - PCINT15:8: Pin Change Enable Mask 15:8

Each PCINT15:8-bit selects whether pin change interrupt is enabled on the correspond-
ing I/O pin. If PCINT15:8 is set and the PCIE1 bit in EIMSK is set, pin change interrupt is
enabled on the corresponding 1/O pin. If PCINT15:8 is cleared, pin change interrupt on
the corresponding I/O pin is disabled.

ATMEL o
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PCMSKO - Pin Change Mask
Register 0

ATMEL

Bit 7 6 5 4 3 2 1 0

(0x6B) I PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINTO I PCMSKO
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 - PCINT7:0: Pin Change Enable Mask 7:0

Each PCINT7:0 bit selects whether pin change interrupt is enabled on the correspond-
ing 1/O pin. If PCINT7:0 is set and the PCIEO bit in PCICR is set, pin change interrupt is

enabled on the corresponding I/O pin. If PCINT7:0 is cleared, pin change interrupt on
the corresponding I/O pin is disabled.
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I/O-Ports

Introduction All AVR ports have true Read-Modify-Write functionality when used as general digital
I/0O ports. This means that the direction of one port pin can be changed without uninten-
tionally changing the direction of any other pin with the SBI and CBI instructions. The
same applies when changing drive value (if configured as output) or enabling/disabling
of pull-up resistors (if configured as input). Each output buffer has symmetrical drive
characteristics with both high sink and source capability. The pin driver is strong enough
to drive LED displays directly. All port pins have individually selectable pull-up resistors
with a supply-voltage invariant resistance. All I/O pins have protection diodes to both
Vcc and Ground as indicated in Figure 32. Refer to “Electrical Characteristics” on page
374 for a complete list of parameters.

Figure 32. I/O Pin Equivalent Schematic

pu

Logic

See Figure
"General Digital /0" for
Details

§y)

All registers and bit references in this section are written in general form. A lower case
“X” represents the numbering letter for the port, and a lower case “n” represents the bit
number. However, when using the register or bit defines in a program, the precise form
must be used. For example, PORTBS3 for bit no. 3 in Port B, here documented generally
as PORTxn. The physical I/O Registers and bit locations are listed in “Table 70 and
Table 71 relates the alternate functions of Port L to the overriding signals shown in Fig-
ure 36 on page 89.” on page 114.

Three 1/0 memory address locations are allocated for each port, one each for the Data
Register — PORTx, Data Direction Register — DDRX, and the Port Input Pins — PINx. The
Port Input Pins 1/O location is read only, while the Data Register and the Data Direction
Register are read/write. However, writing a logic one to a bit in the PINx Register, will
result in a toggle in the corresponding bit in the Data Register. In addition, the Pull-up
Disable — PUD bit in MCUCR disables the pull-up function for all pins in all ports when
set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on
page 84. Most port pins are multiplexed with alternate functions for the peripheral fea-
tures on the device. How each alternate function interferes with the port pin is described
in “Alternate Port Functions” on page 89. Refer to the individual module sections for a
full description of the alternate functions.

ATMEL 5
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Ports as General Digital
/0

Configuring the Pin

ATMEL

Note that enabling the alternate function of some of the port pins does not affect the use
of the other pins in the port as general digital I/O.

The ports are bi-directional 1/O ports with optional internal pull-ups. Figure 33 shows a
functional description of one 1/O-port pin, here generically called Pxn.

Figure 33. General Digital /0"

k PUD
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SLEEP '\r RRx
l/
SYNCHRONIZER
| —————— h RPx
> D Qf——D a |
l.r/ | PINxn | L
_| | r L Q |'> [¢] |
|______| clkyo
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP:  SLEEP CONTROL WRx: WRITE PORTx
clk, i70 CLOCK RRx: READ PORTx REGISTER
RPx READ PORTX PIN

WPx: WRITE PINx REGISTER

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port.
clk,0, SLEEP, and PUD are common to all ports.

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in
“Table 70 and Table 71 relates the alternate functions of Port L to the overriding signals
shown in Figure 36 on page 89.” on page 114, the DDxn bits are accessed at the DDRx
I/0 address, the PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINXx
I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written
logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is config-
ured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up
resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin. The port pins are tri-stated when
reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is
driven high (one). If PORTxn is written logic zero when the pin is configured as an out-
put pin, the port pin is driven low (zero).

s  ATmega640/1280/1281/2560/2561 m——————
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Toggling the Pin

Switching Between Input and
Output

Reading the Pin Value

2549K-AVR-01/07

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of
DDRxn. Note that the SBI instruction can be used to toggle one single bit in a port.

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn,
PORTxn} = Ob11), an intermediate state with either pull-up enabled {DDxn, PORTxn} =
0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up
enabled state is fully acceptable, as a high-impedant environment will not notice the dif-
ference between a strong high driver and a pull-up. If this is not the case, the PUD bit in
the MCUCR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The
user must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state
({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 37 summarizes the control signals for the pin value.

Table 37. Port Pin Configurations

5
23
S c o=
(=] O| D¢
o o ac /0 Pull-up | Comment
0 0 X Input No Tri-state (Hi-Z)
0 1 0 Input Yes Pxn will source current if ext. pulled low.
0 1 1 Input No Tri-state (Hi-Z)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

Independent of the setting of Data Direction bit DDxn, the port pin can be read through
the PINxn Register bit. As shown in Figure 33, the PINxn Register bit and the preceding
latch constitute a synchronizer. This is needed to avoid metastability if the physical pin
changes value near the edge of the internal clock, but it also introduces a delay. Figure
34 shows a timing diagram of the synchronization when reading an externally applied
pin value. The maximum and minimum propagation delays are denoted t,y ma, and tyg min
respectively.
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Figure 34. Synchronization when Reading an Externally Applied Pin value

systTeMok _ [ L L I L_
INSTRUCTIONS X x X xx X nreme X

SYNC LATCH e
PINXn : :
r17 OxOOé X OxFF
.: tpd, max . =;
tpd, min
R

Consider the clock period starting shortly after the first falling edge of the system clock.
The latch is closed when the clock is low, and goes transparent when the clock is high,
as indicated by the shaded region of the “SYNC LATCH?” signal. The signal value is
latched when the system clock goes low. It is clocked into the PINxn Register at the suc-
ceeding positive clock edge. As indicated by the two arrows tpd,max and tpd,min, a
single signal transition on the pin will be delayed between %2 and 1% system clock
period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as
indicated in Figure 35. The out instruction sets the “SYNC LATCH” signal at the positive
edge of the clock. In this case, the delay tpd through the synchronizer is 1 system clock
period.

Figure 35. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK | |

ri6 OXFF_:
INSTRUCTIONS __ > outPORTX, 16 )( nop )( inri7, PiNx >
SYNC LATCH | ;
PINXn :
ri7 0x00 X oxFF

pd

T S
Y.

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and
define the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The
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Digital Input Enable and Sleep
Modes

2549K-AVR-01/07

resulting pin values are read back again, but as previously discussed, a nop instruction
is included to be able to read back the value recently assigned to some of the pins.

Assembly Code Example("

; Define pull-ups and set outputs high

; Define directions for port pins

1di rl6, (1<<PB7) | (1<<PB6) | (1<<PBl) | (1<<PBO)

1di rl7, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO)
out PORTB, rl6

out DDRB, rl7

; Insert nop for synchronization

nop

; Read port pins

in rl6é, PINB

C Code Example

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1l) | (1<<PBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO) ;
/* Insert nop for synchronization*/
__no_operation() ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time
from pull-ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set,
defining bit 2 and 3 as low and redefining bits 0 and 1 as strong high drivers.

As shown in Figure 33, the digital input signal can be clamped to ground at the input of
the schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep
Controller in Power-down mode, Power-save mode, and Standby mode to avoid high
power consumption if some input signals are left floating, or have an analog signal level
close to Vc/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external inter-
rupt request is not enabled, SLEEP is active also for these pins. SLEEP is also
overridden by various other alternate functions as described in “Alternate Port Func-
tions” on page 89.

If a logic high level (“one”) is present on an asynchronous external interrupt pin config-
ured as “Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the
external interrupt is not enabled, the corresponding External Interrupt Flag will be set
when resuming from the above mentioned Sleep mode, as the clamping in these sleep
mode produces the requested logic change.

ATMEL o
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Unconnected Pins If some pins are unused, it is recommended to ensure that these pins have a defined
level. Even though most of the digital inputs are disabled in the deep sleep modes as
described above, floating inputs should be avoided to reduce current consumption in all
other modes where the digital inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal
pull-up. In this case, the pull-up will be disabled during reset. If low power consumption
during reset is important, it is recommended to use an external pull-up or pull-down.
Connecting unused pins directly to V; or GND is not recommended, since this may
cause excessive currents if the pin is accidentally configured as an output.
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Alternate Port Functions
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Most port pins have alternate functions in addition to being general digital I/Os. Figure
36 shows how the port pin control signals from the simplified Figure 33 can be overrid-
den by alternate functions. The overriding signals may not be present in all port pins, but
the figure serves as a generic description applicable to all port pins in the AVR micro-
controller family.

Figure 36. Alternate Port Functions!"
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1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port.
clk,0, SLEEP, and PUD are common to all ports. All other signals are unique for each

pin.
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Table 38 summarizes the function of the overriding signals. The pin and port indexes
from Figure 36 are not shown in the succeeding tables. The overriding signals are gen-
erated internally in the modules having the alternate function.

Table 38. Generic Description of Overriding Signals for Alternate Functions

Signal Name | Full Name Description
PUOE Pull-up Override If this signal is set, the pull-up enable is controlled by the
Enable PUOV signal. If this signal is cleared, the pull-up is
enabled when {DDxn, PORTxn, PUD} = 0b010.
PUOV Pull-up Override | If PUOE is set, the pull-up is enabled/disabled when
Value PUQV is set/cleared, regardless of the setting of the
DDxn, PORTxn, and PUD Register bits.
DDOE Data Direction If this signal is set, the Output Driver Enable is controlled
Override Enable | by the DDQV signal. If this signal is cleared, the Output
driver is enabled by the DDxn Register bit.

DDOV Data Direction If DDOE is set, the Output Driver is enabled/disabled

Override Value when DDOV is set/cleared, regardless of the setting of
the DDxn Register bit.

PVOE Port Value If this signal is set and the Output Driver is enabled, the

Override Enable | port value is controlled by the PVOV signal. If PVOE is
cleared, and the Output Driver is enabled, the port Value
is controlled by the PORTxn Register bit.

PVOV Port Value If PVOE is set, the port value is set to PVOV, regardless

Override Value of the setting of the PORTxn Register bit.
PTOE Port Toggle If PTOE is set, the PORTxn Register bit is inverted.
Override Enable
DIEOE Digital Input If this bit is set, the Digital Input Enable is controlled by
Enable Override | the DIEQV signal. If this signal is cleared, the Digital Input
Enable Enable is determined by MCU state (Normal mode, sleep
mode).

DIEQV Digital Input If DIEOE is set, the Digital Input is enabled/disabled when

Enable Override DIEQV is set/cleared, regardless of the MCU state
Value (Normal mode, sleep mode).

DI Digital Input This is the Digital Input to alternate functions. In the
figure, the signal is connected to the output of the schmitt
trigger but before the synchronizer. Unless the Digital
Input is used as a clock source, the module with the
alternate function will use its own synchronizer.

AlO Analog This is the Analog Input/output to/from alternate

Input/Output functions. The signal is connected directly to the pad, and
can be used bi-directionally.

The following subsections shortly describe the alternate functions for each port, and
relate the overriding signals to the alternate function. Refer to the alternate function
description for further details.
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Alternate Functions of Port A The Port A has an alternate function as the address low byte and data lines for the

External Memory Interface.

Table 39. Port A Pins Alternate Functions

Port Pin

Alternate Function

PA7

AD7 (External memory interface address and data bit 7

PA6

ADG6 (External memory interface address and data bit 6

PA5

AD5 (External memory interface address and data bit 5

PA4

AD4 (External memory interface address and data bit 4

PA3

AD3 (External memory interface address and data bit 3

PA2

AD2 (External memory interface address and data bit 2

PA1

AD1 (External memory interface address and data bit 1

PAO

ADO (External memory interface address and data bit 0

Table 40 and Table 41 relates the alternate functions of Port A to the overriding signals
shown in Figure 36 on page 89.

Table 40. Overriding Signals for Alternate Functions in PA7:PA4
Signal
Name | PA7/AD7 PA6/AD6 PA5/AD5 PA4/AD4
PUOE | SRE SRE SRE SRE
PUOV | ~(WR|ADAM) ~(WR | ADA) » ~(WR | ADA) * ~(WR | ADA) »
PORTA7 « PUD PORTA6 « PUD PORTAS « PUD PORTA4 « PUD
DDOE | SRE SRE SRE SRE
DDOV | WR| ADA WR | ADA WR | ADA WR | ADA
PVOE | SRE SRE SRE SRE
PVOV | A7+ADA|D7 A6+ ADA | D6 A5+ ADA | D5 A4« ADA | D4
OUTPUT « WR OUTPUT « WR OUTPUT « WR OUTPUT « WR
DIECE | 0 0 0 0
DIEQV | 0 0 0 0
DI D7 INPUT D6 INPUT D5 INPUT D4 INPUT
AIO - - - -
Note: 1. ADA is short for ADdress Active and represents the time when address is output. See

2549K-AVR-01/07

“External Memory Interface” on page 26 for details.
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Table 41. Overriding Signals for Alternate Functions in PA3:PAOQ

Signal

Name PA3/AD3 PA2/AD2 PA1/AD1 PAO/ADO

PUOE SRE SRE SRE SRE

PUOV | ~(WR|ADA)* ~(WR | ADA) » ~(WR | ADA) » ~(WR | ADA) *
PORTA3 « PUD PORTA2 « PUD PORTA1 « PUD PORTAO « PUD

DDOE SRE SRE SRE SRE

DDOV | WR | ADA WR | ADA WR | ADA WR | ADA

PVOE SRE SRE SRE SRE

PVOV | A3«ADA|D3 A2+ ADA | D2 A1+ADA| D1 A0+ ADA | DO
OUTPUT « WR OUTPUT « WR OUTPUT « WR OUTPUT « WR

DIEOE | 0 0 0 0

DIEQV | 0 0 0 0

DI D3 INPUT D2 INPUT D1 INPUT DO INPUT

AlO - - - -

Alternate Functions of Port B The Port B pins with alternate functions are shown in Table 42.

Table 42. Port B Pins Alternate Functions

Port Pin

Alternate Functions

PB7

OCOA/OC1C/PCINT7 (Output Compare and PWM Output A for Timer/CounterO,
Output Compare and PWM Output C for Timer/Counter1 or Pin Change Interrupt 7)

PB6

OC1B/PCINT6 (Output Compare and PWM Output B for Timer/Counter1 or Pin
Change Interrupt 6)

PB5

OC1A/PCINT5 (Output Compare and PWM Output A for Timer/Counter1 or Pin
Change Interrupt 5)

PB4

OC2A/PCINT4 (Output Compare and PWM Output A for Timer/Counter2 or Pin
Change Interrupt 4)

PB3

MISO/PCINTS3 (SPI Bus Master Input/Slave Output or Pin Change Interrupt 3)

PB2

MOSI/PCINT2 (SPI Bus Master Output/Slave Input or Pin Change Interrupt 2)

PB1

SCK/PCINT1 (SPI Bus Serial Clock or Pin Change Interrupt 1)

PBO

SS/PCINTO (SPI Slave Select input or Pin Change Interrupt 0)

The alternate pin configuration is as follows:

* OCOA/OC1C/PCINT7, Bit 7

OCOA, Output Compare Match A output: The PB7 pin can serve as an external output
for the Timer/Counter0 Output Compare. The pin has to be configured as an output
(DDB? set “one”) to serve this function. The OCOA pin is also the output pin for the PWM
mode timer function.

OC1C, Output Compare Match C output: The PB7 pin can serve as an external output
for the Timer/Counter1 Output Compare C. The pin has to be configured as an output
(DDB?7 set (one)) to serve this function. The OC1C pin is also the output pin for the

PWM mode timer function.
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PCINT7, Pin Change Interrupt source 7: The PB7 pin can serve as an external interrupt
source.

* OC1B/PCINTS, Bit 6

OC1B, Output Compare Match B output: The PB6 pin can serve as an external output
for the Timer/Counter1 Output Compare B. The pin has to be configured as an output
(DDBE6 set (one)) to serve this function. The OC1B pin is also the output pin for the PWM
mode timer function.

PCINT®, Pin Change Interrupt source 6: The PB6 pin can serve as an external interrupt
source.

* OC1A/PCINTS, Bit 5

OC1A, Output Compare Match A output: The PB5 pin can serve as an external output
for the Timer/Counter1 Output Compare A. The pin has to be configured as an output
(DDBS5 set (one)) to serve this function. The OC1A pin is also the output pin for the PWM
mode timer function.

PCINTS5, Pin Change Interrupt source 5: The PB5 pin can serve as an external interrupt
source.

* OC2A/PCINT4, Bit 4

OC2A, Output Compare Match output: The PB4 pin can serve as an external output for
the Timer/Counter2 Output Compare. The pin has to be configured as an output (DDB4
set (one)) to serve this function. The OC2A pin is also the output pin for the PWM mode
timer function.

PCINT4, Pin Change Interrupt source 4: The PB4 pin can serve as an external interrupt
source.

* MISO/PCINT3 - Port B, Bit 3

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPlI is
enabled as a master, this pin is configured as an input regardless of the setting of
DDBS3. When the SPI is enabled as a slave, the data direction of this pin is controlled by
DDBS3. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTBS3 bit.

PCINTS3, Pin Change Interrupt source 3: The PB3 pin can serve as an external interrupt
source.
e MOSI/PCINT2 — Port B, Bit 2

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is
enabled as a slave, this pin is configured as an input regardless of the setting of DDB2.
When the SPI is enabled as a master, the data direction of this pin is controlled by
DDB2. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB2 bit.

PCINT2, Pin Change Interrupt source 2: The PB2 pin can serve as an external interrupt
source.

* SCK/PCINT1 - Port B, Bit 1

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is
enabled as a slave, this pin is configured as an input regardless of the setting of DDB1.

ATMEL s
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When the SPIO is enabled as a master, the data direction of this pin is controlled by
DDB1. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTBH1 bit.

PCINT1, Pin Change Interrupt source 1: The PB1 pin can serve as an external interrupt
source.

e SS/PCINTO - Port B, Bit 0

SS: Slave Port Select input. When the SPI is enabled as a slave, this pin is configured
as an input regardless of the setting of DDBO. As a slave, the SPI is activated when this
pin is driven low. When the SPI is enabled as a master, the data direction of this pin is
controlled by DDBO0. When the pin is forced to be an input, the pull-up can still be con-
trolled by the PORTBO bit.

Table 43 and Table 44 relate the alternate functions of Port B to the overriding signals
shown in Figure 36 on page 89. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute
the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE
INPUT.

PCINTO, Pin Change Interrupt source 0: The PBO pin can serve as an external interrupt
source.

Table 43. Overriding Signals for Alternate Functions in PB7:PB4

ﬁlagn':llzl PB7/0COA/OC1C PB6/0C1B PB5/0C1A PB4/0C2A
PUCE 0 0 0 0

PUQV 0 0 0 0

DDOE | O 0 0 0

DDOV | O 0 0 0

PVOE OCO0/OC1C ENABLE | OC1B ENABLE OC1A ENABLE OC2A ENABLE
PVOV OCo/0C1C OC1B OC1A OC2A

DIEOE | PCINT7 « PCIEO PCINT6 « PCIEO PCINT5 « PCIEO | PCINT4 « PCIEO
DIEOV | 1 1 1 1

DI PCINT7 INPUT PCINT6 INPUT PCINT5 INPUT PCINT4 INPUT
AIO - - - -

ATmega640/1280/1281/2560/2561 m———
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Table 44. Overriding Signals for Alternate Functions in PB3:PB0

Signal __

Name | PB3/MISO PB2/MOSI PB1/SCK PB0/SS

PUOE | SPE «MSTR SPE « MSTR SPE « MSTR SPE « MSTR

PUOV | PORTB3+PUD PORTB2 « PUD PORTB1+PUD | PORTBO » PUD

DDOE | SPE e« MSTR SPE « MSTR SPE « MSTR SPE « MSTR

DDOV | 0 0 0 0

PVOE | SPE«MSTR SPE « MSTR SPE « MSTR 0

PVOV | SPISLAVE OUTPUT | SPIMSTR OUTPUT | SCKOUTPUT | 0

DIEOE | PCINT3 « PCIEO PCINT2 « PCIEO PCINT1 « PCINTO «

PCIEO PCIEO

DIEOV | 1 1 1 1

DI SPI MSTR INPUT SPI SLAVE INPUT | SCK INPUT SPISS
PCINT3 INPUT PCINT2 INPUT PCINT1 INPUT | PCINTO INPUT

AlO - - - -

Alternate Functions of Port C The Port C alternate function is as follows:

Table 45. Port C Pins Alternate Functions

Port Pin Alternate Function
PC7 A15(External Memory interface address bit 15)
PC6 A14(External Memory interface address bit 14)
PC5 A13(External Memory interface address bit 13)
PC4 A12(External Memory interface address bit 12)
PC3 A11(External Memory interface address bit 11)
PC2 A10(External Memory interface address bit 10)
PC1 A9(External Memory interface address bit 9)
PCO A8(External Memory interface address bit 8)

Table 46 and Table 47 relate the alternate functions of Port C to the overriding signals
shown in Figure 36 on page 89.
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Table 46. Overriding Signals for Alternate Functions in PC7:PC4

Signal
Name PC7/A15 PC6/A14 PC5/A13 PC4/A12
PUOE | SRE * (XMM<1) SRE ¢ (XMM<2) | SRE * (XMM<3) | SRE * (XMM<4)
PUOV 0 0 0 0
DDOE | SRE * (XMM<1) SRE ¢ (XMM<2) | SRE * (XMM<3) | SRE * (XMM<4)
DDOV 1 1 1 1
PVOE SRE ¢ (XMM<1) SRE « (XMM<2) | SRE ¢ (XMM<3) | SRE * (XMM<4)
PVOV A15 A14 A13 A12
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AlIO - - - -
Table 47. Overriding Signals for Alternate Functions in PC3:PCO
Signal
Name PC3/A11 PC2/A10 PC1/A9 PCO/A8
PUOE SRE ¢ (XMM<5) SRE ¢ (XMM<6) SRE « (XMM<7) SRE ¢ (XMM<7)
PUOV 0 0 0 0
DDOE SRE ¢ (XMM<5) SRE « (XMM<6) SRE ¢ (XMM<7) SRE ¢ (XMM<7)
DDOV 1 1 1 1
PVOE SRE ¢ (XMM<5) SRE ¢ (XMM<6) SRE « (XMM<7) SRE ¢ (XMM<7)
PVOV A1 A10 A9 A8
DIEOE 0 0 0 0
DIEQV 0 0 0 0
DI - - - -
AlIO - - - -
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Alternate Functions of Port D The Port D pins with alternate functions are shown in Table 48.

Table 48. Port D Pins Alternate Functions

Port Pin Alternate Function
PD7 TO (Timer/Counter0 Clock Input)
PD6 T1 (Timer/Counter1 Clock Input)
PD5 XCK1 (USART1 External Clock Input/Output)
PD4 ICP1 (Timer/Counter1 Input Capture Trigger)
PD3 INT3/TXD1 (External Interrupt3 Input or USART1 Transmit Pin)
PD2 INT2/RXD1 (External Interrupt2 Input or USART1 Receive Pin)
PDA1 INT1/SDA (External Interrupt1 Input or TWI Serial DAta)
PDO INTO/SCL (External InterruptO Input or TWI Serial CLock)

The alternate pin configuration is as follows:

e TO-PortD, Bit7

TO, Timer/Counter0O counter source.

e T1-PortD, Bit6

T1, Timer/Counter1 counter source.

* XCK1 - Port D, Bit5

XCK1, USART1 External clock. The Data Direction Register (DDD5) controls whether
the clock is output (DDD5 set) or input (DDD5 cleared). The XCK1 pin is active only
when the USART1 operates in Synchronous mode.

e ICP1-PortD, Bit4

ICP1 — Input Capture Pin 1: The PD4 pin can act as an input capture pin for
Timer/Counter1.

e INT3/TXD1 - Port D, Bit 3

INT3, External Interrupt source 3: The PD3 pin can serve as an external interrupt source
to the MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 Transmitter
is enabled, this pin is configured as an output regardless of the value of DDD3.

* INT2/RXD1 - Port D, Bit 2

INT2, External Interrupt source 2. The PD2 pin can serve as an External Interrupt
source to the MCU.

RXD1, Receive Data (Data input pin for the USART1). When the USART1 receiver is
enabled this pin is configured as an input regardless of the value of DDD2. When the
USART forces this pin to be an input, the pull-up can still be controlled by the PORTD2
bit.

ATMEL o
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* INT1/SDA - Port D, Bit 1

INT1, External Interrupt source 1. The PD1 pin can serve as an external interrupt source
to the MCU.

SDA, 2-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable
the 2-wire Serial Interface, pin PD1 is disconnected from the port and becomes the
Serial Data 1/O pin for the 2-wire Serial Interface. In this mode, there is a spike filter on
the pin to suppress spikes shorter than 50 ns on the input signal, and the pin is driven by
an open drain driver with slew-rate limitation.

* INTO/SCL - Port D, Bit 0

INTO, External Interrupt source 0. The PDO pin can serve as an external interrupt source
to the MCU.

SCL, 2-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable
the 2-wire Serial Interface, pin PDO is disconnected from the port and becomes the
Serial Clock I/0O pin for the 2-wire Serial Interface. In this mode, there is a spike filter on
the pin to suppress spikes shorter than 50 ns on the input signal, and the pin is driven by
an open drain driver with slew-rate limitation.

Table 49 and Table 50 relates the alternate functions of Port D to the overriding signals
shown in Figure 36 on page 89.

Table 49. Overriding Signals for Alternate Functions PD7:PD4

Signal Name PD7/TO PD6/T1 PD5/XCK1 PD4/ICP1
PUCE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 XCK1 OUTPUT ENABLE 0

DDOV 0 0 1 0

PVOE 0 0 XCK1 OUTPUT ENABLE 0

PVOV 0 0 XCK1 OUTPUT 0

DIEOE 0 0 0 0

DIEQV 0 0 0 0

DI TO INPUT T1 INPUT XCK1 INPUT ICP1 INPUT
AIO - - - -

ATmega640/1280/1281/2560/2561 m———
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Table 50. Overriding Signals for Alternate Functions in PD3:PDO("

Signal Name | PD3/INT3/TXD1 | PD2/INT2/RXD1 PD1/INT1/SDA | PDO/INTO/SCL

PUOE TXENT1 RXENT1 TWEN TWEN

PUOV 0 PORTD2 « PUD PORTD1 e« PUD | PORTDO » PUD

DDOE TXEN1 RXEN1 TWEN TWEN

DDOV 1 0 SDA_OUT SCL_OUT

PVOE TXENT1 0 TWEN TWEN

PVOV TXD1 0 0 0

DIEOE INT3 ENABLE INT2 ENABLE INT1 ENABLE INTO ENABLE

DIEQV 1 1 1 1

DI INT3 INPUT INT2 INPUT/RXD1 | INT1 INPUT INTO INPUT

AIO - - SDA INPUT SCL INPUT
Note: 1. When enabled, the 2-wire Serial Interface enables Slew-Rate controls on the output

Alternate Functions of Port E  The Port E pins with alternate functions are shown in Table 51.

Table 51. Port E Pins Alternate Functions

pins PDO and PD1. This is not shown in this table. In addition, spike filters are con-
nected between the AlO outputs shown in the port figure and the digital logic of the
TWI module.

Port Pin

Alternate Function

PE7

INT7/ICP3/CLKO (External Interrupt 7 Input, Timer/Counter3 Input Capture Trigger

or Divided System Clock)

PE6

INT6/ T3 (External Interrupt 6 Input or Timer/Counter3 Clock Input)

PE5

INT5/0OC3C (External Interrupt 5 Input or Output Compare and PWM Output C for

Timer/Counter3)

PE4

INT4/0OC3B (External Interrupt4 Input or Output Compare and PWM Output B for

Timer/Counter3)

PE3

AIN1/OC3A (Analog Comparator Negative Input or Output Compare and PWM

Output A for Timer/Counter3)

PE2

AINO/XCKO (Analog Comparator Positive Input or USARTO external clock

input/output)

PE1

PDOM/TXDO (Programming Data Output or USARTO Transmit Pin)

PEO

PDI"/RXD0/PCINTS8 (Programming Data Input, USARTO Receive Pin or Pin

Change Interrupt 8)

Note: 1.

* INT7/ICP3/CLKO - Port E, Bit 7

Only for ATmega1281/2561. For ATmega640/1280/2560 these functions are
placed on MISO/MOSI pins.

INT7, External Interrupt source 7: The PE7 pin can serve as an external interrupt

source.

ICP3, Input Capture Pin 3: The PE7 pin can act as an input capture pin for
Timer/Counter3.

2549K-AVR-01/07
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CLKO - Divided System Clock: The divided system clock can be output on the PE7 pin.
The divided system clock will be output if the CKOUT Fuse is programmed, regardless
of the PORTE7 and DDE?7 settings. It will also be output during reset.

* INT6/T3 — Port E, Bit 6

INT6, External Interrupt source 6: The PE6 pin can serve as an external interrupt
source.

T3, Timer/Counter3 counter source.

* INT5/0C3C - Port E, Bit 5

INT5, External Interrupt source 5: The PES5 pin can serve as an External Interrupt
source.

OCS3C, Output Compare Match C output: The PES5 pin can serve as an External output
for the Timer/Counter3 Output Compare C. The pin has to be configured as an output
(DDES5 set “one”) to serve this function. The OC3C pin is also the output pin for the
PWM mode timer function.

* INT4/0C3B - Port E, Bit 4

INT4, External Interrupt source 4: The PE4 pin can serve as an External Interrupt
source.

0OC3B, Output Compare Match B output: The PE4 pin can serve as an External output
for the Timer/Counter3 Output Compare B. The pin has to be configured as an output
(DDEA4 set (one)) to serve this function. The OC3B pin is also the output pin for the PWM
mode timer function.

* AIN1/OC3A - Port E, Bit 3

AIN1 — Analog Comparator Negative input. This pin is directly connected to the negative
input of the Analog Comparator.

OCS3A, Output Compare Match A output: The PE3 pin can serve as an External output
for the Timer/Counter3 Output Compare A. The pin has to be configured as an output
(DDE3 set “one”) to serve this function. The OC3A pin is also the output pin for the PWM
mode timer function.

* AINO/XCKO — Port E, Bit 2

AINO — Analog Comparator Positive input. This pin is directly connected to the positive
input of the Analog Comparator.

XCKO, USARTO External clock. The Data Direction Register (DDEZ2) controls whether
the clock is output (DDE2 set) or input (DDE2 cleared). The XCKO pin is active only
when the USARTO operates in Synchronous mode.

* PDO/TXDO - Port E, Bit 1

PDO, SPI Serial Programming Data Output. During Serial Program Downloading, this
pin is used as data output line for the ATmega1281/2561. For ATmega640/1280/2560
this function is placed on MISO.

TXDO0, USARTO Transmit pin.

10  ATmega640/1280/1281/2560/2561 m———
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* PDI/RXDO/PCINT8 — Port E, Bit 0

PDI, SPI Serial Programming Data Input. During Serial Program Downloading, this pin
is used as data input line for the ATmega1281/2561. For ATmega640/1280/2560 this
function is placed on MOSI.

RXDO0, USARTO Receive Pin. Receive Data (Data input pin for the USARTO0). When the
USARTO receiver is enabled this pin is configured as an input regardless of the value of
DDREO. When the USARTO forces this pin to be an input, a logical one in PORTEO will
turn on the internal pull-up.

PCINT8, Pin Change Interrupt source 8: The PEO pin can serve as an external interrupt source.

Table 52 and Table 53 relates the alternate functions of Port E to the overriding signals
shown in Figure 36 on page 89.

Table 52. Overriding Signals for Alternate Functions PE7:PE4

ATMEL

ﬁfr:i' PE7/INT7/ICP3 PE6/INT6/T3 PE5/INT5/0C3C | PE4/INT4/0OC3B
PUOE |0 0 0 0
PUOV |0 0 0 0
DDOE | 0 0 0 0
DDOV | 0 0 0 0
PVOE |0 0 OC3C ENABLE | OC3B ENABLE
PVOV |0 0 0C3C OC3B
DIEOE | INT7 ENABLE INT6 ENABLE INT5 ENABLE INT4 ENABLE
DIEOV | 1 1 1 1
DI INT7 INPUT/ICP3 | INT7 INPUT/T3 INT5 INPUT INT4 INPUT
INPUT INPUT
AlO - - - -
101




102

ATMEL

Table 53. Overriding Signals for Alternate Functions in PE3:PEOQ
Signal PE1/PDO!")/ PEO/PDI"/
Name PE3/AIN1/OC3A | PE2/AINO/XCKO | TXDO RXDO/PCINT8
PUOE 0 0 TXENO RXENO
PUOV 0 0 0 PORTEO » PUD
DDOE 0 XCKO OUTPUT TXENO RXENO
ENABLE
DDQOV 0 1 1 0
PVOE OC3B ENABLE XCKO OUTPUT TXENO 0
ENABLE
PVOV OC3B XCKO OUTPUT TXDO 0
DIEOE | O 0 0 PCINT8 « PCIE1
DIEOQV | 0 0 0 1
DI 0 XCKO INPUT - RXDO
PEO 0 0 0 PCINT8 INPUT
AIO AIN1 INPUT AINO INPUT - -
Note: 1. PDO/PDI only available at PE1/PEO for ATmega1281/2561.

ATmega640/1280/1281/2560/2561 m———
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Alternate Functions of Port F
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The Port F has an alternate function as analog input for the ADC as shown in Table 54.
If some Port F pins are configured as outputs, it is essential that these do not switch
when a conversion is in progress. This might corrupt the result of the conversion. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and
PF4(TCK) will be activated even if a Reset occurs.

Table 54. Port F Pins Alternate Functions

Port Pin Alternate Function
PF7 ADC7/TDI (ADC input channel 7 or JTAG Test Data Input)
PF6 ADCG6/TDO (ADC input channel 6 or JTAG Test Data Output)
PF5 ADC5/TMS (ADC input channel 5 or JTAG Test Mode Select)
PF4 ADC4/TCK (ADC input channel 4 or JTAG Test ClocK)
PF3 ADC3 (ADC input channel 3)
PF2 ADC2 (ADC input channel 2)
PF1 ADC1 (ADC input channel 1)
PFO ADCO (ADC input channel 0)

e TDI, ADC7 - Port F, Bit 7
ADC7, Analog to Digital Converter, Channel 7.

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or
Data Register (scan chains). When the JTAG interface is enabled, this pin can not be
used as an /O pin.

e TDO, ADC6 - Port F, Bit 6

ADCB6, Analog to Digital Converter, Channel 6.

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Regis-
ter. When the JTAG interface is enabled, this pin can not be used as an 1/O pin.

The TDO pin is tri-stated unless TAP states that shift out data are entered.

e TMS, ADC5 - Port F, Bit 5
ADCS5, Analog to Digital Converter, Channel 5.

TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller
state machine. When the JTAG interface is enabled, this pin can not be used as an I/O

pin.
e TCK, ADC4 - Port F, Bit 4
ADC4, Analog to Digital Converter, Channel 4.

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG inter-
face is enabled, this pin can not be used as an I/O pin.

A mEI% 103



104

ATMEL

* ADC3 - ADCO - Port F, Bit 3:0
Analog to Digital Converter, Channel 3:0.

Table 55. Overriding Signals for Alternate Functions in PF7:PF4

:‘3::' PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK
PUOE JTAGEN JTAGEN JTAGEN JTAGEN
PUOV 1 0 1 1
DDOE | JTAGEN JTAGEN JTAGEN JTAGEN
DDOV 0 SHIFT_IR + 0 0
SHIFT_DR
PVOE 0 JTAGEN 0 0
PVOV 0 TDO 0 0
DIEOE | JTAGEN JTAGEN JTAGEN JTAGEN
DIEOV | O 0 0 0
DI - - - -
AIO TDI/ADC7 INPUT | ADC6 INPUT TMS/ADC5 TCK/ADC4
INPUT INPUT
Table 56. Overriding Signals for Alternate Functions in PF3:PFO
Signal Name PF3/ADC3 PF2/ADC2 PF1/ADC1 PFO/ADCO
PUCE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
DIEOE 0 0 0 0
DIEQV 0 0 0 0
DI - - - -
AlIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADCO INPUT

ATmega640/1280/1281/2560/2561 m———
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Alternate Functions of Port G The Port G alternate pin configuration is as follows:
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Table 57. Port G Pins Alternate Functions

Port Pin Alternate Function
PG5 OCO0B (Output Compare and PWM Output B for Timer/CounterQ)
PG4 TOSC1 (RTC Oscillator Timer/Counter2)
PG3 TOSC2 (RTC Oscillator Timer/Counter2)
PG2 ALE (Address Latch Enable to external memory)
PG1 RD (Read strobe to external memory)
PGO WR (Write strobe to external memory)

e OCOB - Port G, Bit5

OCO0B, Output Compare match B output: The PG5 pin can serve as an external output
for the TImer/Counter0 Output Compare. The pin has to be configured as an output
(DDG5 set) to serve this function. The OCOB pin is also the output pin for the PWM
mode timer function.

e TOSC1-Port G, Bit4

TOSC2, Timer Oscillator pin 1: When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PG4 is disconnected from the port, and
becomes the input of the inverting Oscillator amplifier. In this mode, a Crystal Oscillator
is connected to this pin, and the pin can not be used as an I/O pin.

e TOSC2 - Port G, Bit3

TOSC2, Timer Oscillator pin 2: When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PG3 is disconnected from the port, and
becomes the inverting output of the Oscillator amplifier. In this mode, a Crystal Oscillator
is connected to this pin, and the pin can not be used as an I/O pin.

* ALE -Port G, Bit 2

ALE is the external data memory Address Latch Enable signal.

* RD - Port G, Bit 1

RD is the external data memory read control strobe.
* WR - Port G, Bit 0

WR is the external data memory write control strobe.

Table 58 and Table 59 relates the alternate functions of Port G to the overriding signals
shown in Figure 36 on page 89.
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Table 58. Overriding Signals for Alternate Functions in PG5:PG4
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Signal Name | — — PG5/0C0B PG4/TOSCH1
PUOE - - - AS2

PUOV - - - 0

DDOE - - - AS2

DDOV - - - 0

PVOE - - OCOB Enable 0

PVOV - - ocoB 0

PTOE - - - -

DIEOE - - - AS2

DIEOV - - - EXCLK

DI - - - -

AlO - - - T/C2 OSC INPUT

Table 59. Overriding Signals for Alternate Functions in PG3:PG0

Signal Name | PG3/TOSC2 PG2/ALE/A7 PG1/RD PGO/WR
PUOE AS2 « EXCLK SRE SRE SRE
PUOV 0 0 0 0
DDOE AS2 « EXCLK SRE SRE SRE
DDOV 0 1 1 1
PVOE 0 SRE SRE SRE
PVOV 0 ALE RD WR
PTOE - - - -
DIEOE AS2 « EXCLK 0 0 0
DIEOV 0 0 0 0

DI - - - -
AIO T/C2 OSC OUTPUT | — - -

ATmega640/1280/1281/2560/2561 m———
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Alternate Functions of Port H The Port H alternate pin configuration is as follows:
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Table 60. Port H Pins Alternate Functions

Port Pin Alternate Function

PH7 T4 (Timer/Counter4 Clock Input)

PH6 OC2B(Output Compare and PWM Output B for Timer/Counter2)
PH5 OC4C(Output Compare and PWM Output C for Timer/Counter4)
PH4 OC4B(Output Compare and PWM Qutput B for Timer/Counter4)
PH3 OC4A(Output Compare and PWM Output A for Timer/Counter4)
PH2 XCK2 (USART2 External Clock)

PHA1 TXD2 (USART2 Transmit Pin)

PHO RXD2 (USART2 Receive Pin)

e T4 -PortH,Bit7

T4, Timer/Counter4 counter source.

* OC2B - Port H, Bit 6

OC2B, Output Compare Match B output: The PH6 pin can serve as an external output for the
Timer/Counter2 Output Compare B. The pin has to be configured as an output (DDH6 set) to
serve this function. The OC2B pin is also the output pin for the PWM mode timer function.

e OC4C - PortH, Bit5

OC4C, Output Compare Match C output: The PH5 pin can serve as an external output for the
Timer/Counter4 Output Compare C. The pin has to be configured as an output (DDH5 set) to
serve this function. The OC4C pin is also the output pin for the PWM mode timer function.

e OC4B - Port H, Bit 4

0OC4B, Output Compare Match B output: The PH4 pin can serve as an external output for the
Timer/Counter2 Output Compare B. The pin has to be configured as an output (DDH4 set) to
serve this function. The OC4B pin is also the output pin for the PWM mode timer function.

* OC4A - PortH, Bit 3

OC4C, Output Compare Match A output: The PH3 pin can serve as an external output
for the Timer/Counter4 Output Compare A. The pin has to be configured as an output
(DDHS3 set) to serve this function. The OC4A pin is also the output pin for the PWM
mode timer function.

¢ XCK2 - Port H, Bit 2

XCK2, USART2 External Clock: The Data Direction Register (DDH2) controls whether the clock is
output (DDH2 set) or input (DDH2 cleared). The XC2K pin is active only when the USART2 oper-
ates in synchronous mode.

e TXD2 - Port H, Bit 1
TXD2, USART2 Transmit Pin.
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* RXD2 - Port H, Bit 0

RXD2, USART2 Receive pin: Receive Data (Data input pin for the USART2). When the
USART2 Receiver is enabled, this pin is configured as an input regardless of the value
of DDHO. When the USART2 forces this pin to be an input, a logical on in PORTHO will
turn on the internal pull-up.

Table 61. Overriding Signals for Alternate Functions in PH7:PH4

Signal Name | PH7/T4 PH6/0C2B PH5/0C4C PH4/0C4B
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 OC2B ENABLE OC4C ENABLE OC4B ENABLE
PVOV 0 0C2B 0C4C 0OC4B
PTOE - - - -
DIEOCE 0 0 0 0
DIEQV 0 0 0 0
DI T4 INPUT 0 0 0
AlO - - - -
Table 62. Overriding Signals for Alternate Functions in PH3:PHO
Signal Name | PH3/OC4A PH2/XCK2 PH1/TXD2 PHO/RXD2
PUOE 0 0 TXEN2 RXEN2
PUOV 0 0 0 PORTHO ¢ PUD
DDOE 0 XCK2 OUTPUT | TXEN2 RXEN2
ENABLE
DDOV 0 1 1 0
PVOE OC4A ENABLE XCK2 OUTPUT | TXEN2 0
ENABLE
PVOV OC4A XCK2 TXD2 0
PTOE - - - -
DIEOE 0 0 0 0
DIEQV 0 0 0 0
DI 0 XC2K INPUT 0 RXD2
AlIO - - - -
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Alternate Functions of Port J
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The Port J alternate pin configuration is as follows:

Table 63. Port J Pins Alternate Functions

Port Pin Alternate Function
PJ7 -
PJ6 PCINT15 (Pin Change Interrupt 15)
PJ5 PCINT14 (Pin Change Interrupt 14)
PJ4 PCINT13 (Pin Change Interrupt 13)
PJ3 PCINT12 (Pin Change Interrupt 12)
PJ2 XCK3/PCINT11 (USARTS3 External Clock or Pin Change Interrupt 11)
PJA1 TXDS3/PCINT10 (USARTS3 Transmit Pin or Pin Change Interrupt 10)
PJO RXD3/PCINT9 (USART3 Receive Pin or Pin Change Interrupt 9)

* PCINT15:12 - Port J, Bit 6:3

PCINT15:12, Pin Change Interrupt Source 15:12. The PJ6:3 pins can serve as External
Interrupt Sources

* XCK2/PCINT11 - Port J, Bit 2

XCK2, USART 2 External Clock. The Data Direction Register (DDJ2) controls whether
the clock is output (DDJ2 set) or input (DDJ2 cleared). The XCK2 pin is active only when
the USART2 operates in synchronous mode.

PCINT11, Pin Change Interrupt Source 11. The PJ2 pin can serve as External Interrupt
Sources
e TXD3/PCINT10 - Port J, Bit 1

TXD3, USARTS Transmit pin

PCINT10, Pin Change Interrupt Source 10. The PJ1 pin can serve as External Interrupt
Sources

* RXD3/PCINT9 - Port J, Bit 0
RXD3, USARTS3 Receive pin. Receive Data (Data input pin for the USART3). When the
USART3 Receiver is enabled, this pin is configured as an input regardless of the value

of DDJO. When the USARTS3 forces this pin to be an input, a logical one in PORTJO will
turn on the internal pull-up.

PCINT9, Pin Change Interrupt Source 9. The PJO pin can serve as External Interrupt
Sources

Table 64 and Table 65 relates the alternate functions of Port J to the overriding signals
shown in Figure 36 on page 89
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Table 64. Overriding Signals for Alternate Functions in PJ7:PJ4

Signal Name

PJ7

PJ6/ PCINT15

PJ5/ PCINT14

PJ4/ PCINT13

PUOE

PUOV

DDOE

DDOV

PVOE

PVOV

OO0 oo o |o

OO0 oo o |o

oO|jo oo o |o

OO0 oo o |o

PTOE

DIEOE

PCINT15-PCIE1

PCINT14-PCIE1

PCINT13-PCIE1

DIEQV

1

1

1

DI

o | O | O

PCINT15 INPUT

PCINT14 INPUT

PCINT13 INPUT

AIO

Table 65. Overriding Signals for Alternate Function

s in PJ3:PJ0O

Signal Name

PJ3/PCINT12

PJ2/XCK3/PCIN
T11

PJ1/TXD3/PCIN
T10

PJO/RXD3/PCIN
T9

PUOE 0 0 TXEN3 RXEN3

PUOV 0 0 0 PORTJ0-PUD

DDOE 0 XCK3 OUTPUT | TXEN3 RXEN3
ENABLE

DDOV 0 1 1 0

PVOE 0 XCK3 OUTPUT | TXEN3 0
ENABLE

PVOV 0 XCK3 TXD3 0

PTOE - - - -

DIEOE PCINT12.PCIE1 | PCINT11-PCIE1 | PCINT10-PCIE1 | PCINT9-PCIE1

DIEOV 1 1 1 1

DI PCINT12 INPUT | PCINT11 INPUT | PCINT10 INPUT | PCINT9 INPUT
XCK3 INPUT RXD3

AlO - - - -
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Alternate Functions of Port K The Port K alternate pin configuration is as follows:

2549K-AVR-01/07

Table 66. Port K Pins Alternate Functions

Port Pin Alternate Function
PK7 ADC15/PCINT23 (ADC Input Channel 15 or Pin Change Interrupt 23)
PK6 ADC14/PCINT22 (ADC Input Channel 14 or Pin Change Interrupt 22)
PK5 ADC13/PCINT21 (ADC Input Channel 13 or Pin Change Interrupt 21)
PK4 ADC12/PCINT20 (ADC Input Channel 12 or Pin Change Interrupt 20)
PK3 ADC11/PCINT19 (ADC Input Channel 11 or Pin Change Interrupt 19)
PK2 ADC10/PCINT18 (ADC Input Channel 10 or Pin Change Interrupt 18)
PK1 ADC9/PCINT17 (ADC Input Channel 9 or Pin Change Interrupt 17)
PKO ADCS8 /PCINT16 (ADC Input Channel 8 or Pin Change Interrupt 16)

e ADC15:8/PCINT23:16 — Port K, Bit 7:0
ADC15:8, Analog to Digital Converter, Channel 15 - 8.

PCINT23:16, Pin Change Interrupt Source 23:16. The PK7:0 pins can serve as External
Interrupt Sources.

Table 67. Overriding Signals for Alternate Functions in PK7:PK4

ATMEL

PK7/ADC15/ | PK6/ADC14/ | PK5/ADC13/ | PK4/ADC12/

Signal Name | PCINT23 PCINT22 PCINT21 PCINT20

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE - - - -

DIEOE PCINT23 « PCINT22 « PCINT21 « PCINT20 «
PCIE2 PCIE2 PCIE2 PCIE2

DIEOV 1 1 1 1

DI PCINT23 PCINT22 PCINT21 PCINT20
INPUT INPUT INPUT INPUT

AlO ADC15INPUT | ADC14 INPUT | ADC13INPUT | ADC12 INPUT

1
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Table 68. Overriding Signals for Alternate Functions in PK3:PKO

PK3/ADC11/ PK2/ADC10/ PK1/ADCY/ PKO/ADC8/
Signal Name PCINT19 PCINT18 PCINT17 PCINT16
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
PTOE - - - -
DIEOE PCINT19 * PCINT18 * PCINT17 PCINT16 ¢
PCIE2 PCIE2 PCIE2 PCIE2
DIEOV 1 1 1 1
DI PCINT19 INPUT | PCINT18 INPUT | PCINT17 PCINT16
INPUT INPUT
AIO ADC11 INPUT | ADC10INPUT | ADC9 INPUT | ADC8 INPUT
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Alternate Functions of Port L
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The Port L alternate pin configuration is as follows:

Table 69. Port L Pins Alternate Functions

Port Pin Alternate Function
PL7 -
PL6 -
PL5 OC5C (Output Compare and PWM Output C for Timer/Counter5)
PL4 OC5B (Output Compare and PWM Output B for Timer/Counter5)
PL3 OC5A (Output Compare and PWM Output A for Timer/Counter5)
PL2 T5 (Timer/Counter5 Clock Input)
PL1 ICP5 (Timer/Counter5 Input Capture Trigger)
PLO ICP4 (Timer/Counter4 Input Capture Trigger)

e OC5C-PortlL,Bit5

OC5C, Output Compare Match C output: The PL5 pin can serve as an external output
for the Timer/Counter5 Output Compare C. The pin has to be configured as an output
(DDL5 set) to serve this function. The OC5C pin is also the output pin for the PWM
mode timer function.

e OC5B-PortlL,Bit4

OCS5B, Output Compare Match B output: The PL4 pin can serve as an external output
for the Timer/Counter 5 Output Compare B. The pin has to be configured as an output
(DDL4 set) to serve this function. The OC5B pin is also the output pin for the PWM
mode timer function.

e OC5A-PortlL,Bit3

OCS5A, Output Compare Match A output: The PL3 pin can serve as an external output
for the Timer/Counter 5 Output Compare A. The pin has to be configured as an output
(DDLS3 set) to serve this function. The OC5A pin is also the output pin for the PWM
mode timer function.

e T5-PortL, Bit2

T5, Timer/Counter5 counter source.

* ICP5 - Port L, Bit 1

ICP5, Input Capture Pin 5: The PL1 pin can serve as an Input Capture pin for
Timer/Counter5.

* ICP4 -PortL,Bit0

ICP4, Input Capture Pin 4: The PLO pin can serve as an Input Capture pin for
Timer/Counter4.
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Table 70 and Table 71 relates the alternate functions of Port L to the overriding signals
shown in Figure 36 on page 89.

Table 70. Overriding Signals for Alternate Functions in PL7:PL4

Signal Name | PL7 PL6 PL5/0C5C PL4/0C5B
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE - - 0 0
DDOV - - 0 0
PVOE - - OC5C ENABLE OC5B ENABLE
PVOV - - 0CsC 0OCsB
PTOE - - - -
DIEOCE 0 0 0 0
DIEQV 0 0 0 0
DI 0 0 0 0
AlO - - - -
Table 71. Overriding Signals for Alternate Functions in PL3:PLO
Signal Name | PL3/OC5A PL2/T5 PL1/ICP5 PLO/ICP4
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE OC5A ENABLE 0 0 0
PVOV OC5A 0 0 0
PTOE - - - -
DIEOCE 0 0 0 0
DIEQV 0 0 0 0
DI 0 T5 INPUT ICP5 INPUT ICP4 INPUT
AlIO - - - -
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Register Description for 1/0-Ports

MCUCR - MCU Control
Register

PORTA - Port A Data Register

DDRA - Port A Data Direction
Register

PINA — Port A Input Pins
Address

PORTB - Port B Data Register

DDRB - Port B Data Direction
Register

PINB - Port B Input Pins
Address

2549K-AVR-01/07

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) | Jm = = PUD = = IVSEL IVCE | MCUCR
Read/Write R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 4 — PUD: Pull-up Disable

When this bit is written to one, the 1/0 ports pull-up resistors are disabled even if the
DDxn and PORTxn Registers are configured to enable the pull-up resistor ({DDxn,
PORTxn} = 0b01). See “Configuring the Pin” on page 84 for more details about this
feature.

Bit 7 6 5 4 3 2 1 0

0x02 (0x22) I PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTAO I PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x01 (0x21) I DDA7 DDA6 DDAS5 DDA4 DDA3 DDA2 DDA1 DDAO I DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x00 (0x20) I PINA7 PINA6 PINAS PINA4 PINA3 PINA2 PINA1 PINAO I PINA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) I PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 PORTBO I PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) I DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO I DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) I PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO I PINB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
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PORTC - Port C Data Register

Bit 7 6 5 4 3 2 1 0
0x08 (0x28) I PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTCO I PORTC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
DDRC - Port C Data Direction
Register Bit 7 6 5 4 3 2 1 0
0x07 (0x27) I DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO | DDRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
PINC- Port C Input Pins
Address Bit 7 6 5 4 3 2 1 0
0x06 (0x26) I PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO I PINC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
PORTD - Port D Data Register
Bit 7 6 5 4 3 2 1 0
0x0B (0x2B) I PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 PORTDO I PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
DDRD - Port D Data Direction
Register Bit 7 6 5 4 3 2 1 0
0x0A (0x2A) I DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO I DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
PIND - Port D Input Pins
Address Bit 7 6 5 4 3 2 1 0
0x09 (0x29) I PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO I PIND
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
PORTE - Port E Data Register
Bit 7 6 5 4 3 2 1 0
0xOE (0x2E) I PORTE7 PORTE6 PORTES PORTE4 PORTE3 PORTE2 PORTE1 PORTEO I PORTE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
DDRE - Port E Data Direction
Register Bit 7 6 5 4 3 2 1 0
0x0D (0x2D) I DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDEO I DDRE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
PINE - Port E Input Pins
Address Bit 7 6 5 4 3 2 1 0
0x0C (0x2C) | PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINEO | PINE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
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PORTF - Port F Data Register

DDRF - Port F Data Direction
Register

PINF — Port F Input Pins
Address

PORTG - Port G Data Register

DDRG - Port G Data Direction
Register

PING - Port G Input Pins
Address

PORTH - Port H Data Register

DDRH - Port H Data Direction
Register

PINH - Port H Input Pins
Address

Bit

0x11 (0x31)
Read/Write
Initial Value

Bit

0x10 (0x30)
Read/Write
Initial Value

Bit

OxOF (0x2F)
Read/Write

Initial Value

Bit

0x14 (0x34)
Read/Write
Initial Value

Bit

0x13 (0x33)
Read/Write
Initial Value

Bit

0x12 (0x32)
Read/Write
Initial Value

Bit

(0x102)
Read/Write
Initial Value

Bit

(0x101)
Read/Write
Initial Value

Bit

(0x100)
Read/Write
Initial Value

7 6 5 4 3 2 1 0
I PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTFO I PORTF
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDFO0 I DDRF
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINFO I PINF
R/W R/W R/W R/W R/W R/W R/W R/W
N/A N/A N/A N/A N/A N/A N/A N/A
7 6 5 4 3 2 1 0
I - - PORTG5 | PORTG4 | PORTG3 | PORTG2 | PORTG1 | PORTGO I PORTG
R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I - - DDG5 DDG4 DDG3 DDG2 DDG1 DDGO I DDRG
R R R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I - - PING5 PING4 PING3 PING2 PING1 PINGO I PING
R R R/W R/W R/W R/W R/W R/W
0 0 N/A N/A N/A N/A N/A N/A
7 6 5 4 3 2 1 0
I PORTH7 | PORTH6 | PORTH5 | PORTH4 | PORTH3 | PORTH2 | PORTH1 | PORTHO I PORTH
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I DDH7 DDH6 DDH5 DDH4 DDH3 DDH2 DDH1 DDHO I DDRH
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I PINH5 PINH5 PINH5 PINH4 PINH3 PINGH PINH1 PINHO I PINH
R/W R/W R/W R/W R/W R/W R/W R/W
N/A N/A N/A N/A N/A N/A N/A N/A
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PORTJ - Port J Data Register

DDRJ - Port J Data Direction
Register

PINJ - Port J Input Pins
Address

PORTK - Port K Data Register

DDRK - Port K Data Direction
Register

PINK - Port K Input Pins
Address

PORTL - Port L Data Register

DDRL - Port L Data Direction
Register

PINL - Port L Input Pins
Address

Bit

(0x105)
Read/Write
Initial Value

Bit

(0x104)
Read/Write
Initial Value

Bit

(0x103)
Read/Write
Initial Value

Bit

(0x108)
Read/Write
Initial Value

Bit

(0x107)
Read/Write
Initial Value

Bit

(0x106)
Read/Write
Initial Value

Bit

(0x10B)
Read/Write
Initial Value

Bit

(0x10A)
Read/Write
Initial Value

Bit

(0x109)
Read/Write
Initial Value

ATMEL

7 6 5 4 3 2 1 0

I PORTJ7 PORTJ6 PORTJ5 PORTJ4 PORTJ3 PORTJ2 PORTJ1 PORTJO I PORTJ
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

I DDJ7 DDJ6 DDJ5 DDJ4 DDJ3 DDJ2 DDJ1 DDJO I DDRJ
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

I PINJ5 PINJ5 PINJ5 PINJ4 PINJ3 PINGJ PINJ1 PINJO I PINJ
R/W R/W R/W R/W R/W R/W R/W R/W
N/A N/A N/A N/A N/A N/A N/A N/A
7 6 5 4 3 2 1 0

I PORTK7 | PORTK6 | PORTK5 | PORTK4 | PORTK3 | PORTK2 | PORTK1 | PORTKO I PORTK
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

I DDK7 DDK6 DDK5 DDK4 DDK3 DDK2 DDK1 DDKO I DDRK
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

I PINK5 PINK5 PINK5 PINK4 PINK3 PINGK PINK1 PINKO I PINK
R/W R/W R/W R/W R/W R/W R/W R/W
N/A N/A N/A N/A N/A N/A N/A N/A
7 6 5 4 3 2 1 0

I PORTL7 | PORTL6 | PORTL5 | PORTL4 | PORTL3 | PORTL2 | PORTL1 PORTLO I PORTL
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

I DDL7 DDL6 DDL5 DDL4 DDL3 DDL2 DDL1 DDLO I DDRL
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

I PINL5 PINLS PINL5 PINL4 PINL3 PINGL PINL1 PINLO I PINL
R/W R/W R/W R/W R/W R/W R/W R/W
N/A N/A N/A N/A N/A N/A N/A N/A
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8-bit Timer/Counter0 Timer/Counter0is a general purpose 8-bit Timer/Counter module, with two independent

with PWM Output Compare Units, and with PWM support. It allows accurate program execution
timing (event management) and wave generation. The main features are:
¢ Two Independent Output Compare Units

Double Buffered Output Compare Registers

Clear Timer on Compare Match (Auto Reload)

Glitch Free, Phase Correct Pulse Width Modulator (PWM)

Variable PWM Period

Frequency Generator

Three Independent Interrupt Sources (TOV0, OCFOA, and OCF0B)

Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 37. For the
actual placement of 1/O pins, refer to “TQFP-pinout ATmega640/1280/2560” on page 2.
CPU accessible I/0 Registers, including I/O bits and 1/O pins, are shown in bold. The
device-specific I/0 Register and bit locations are listed in the “Register Description” on
page 130.

Figure 37. 8-bit Timer/Counter Block Diagram
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Registers The Timer/Counter (TCNTO) and Output Compare Registers (OCROA and OCROB) are
8-bit registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all vis-
ible in the Timer Interrupt Flag Register (TIFRO0). All interrupts are individually masked
with the Timer Interrupt Mask Register (TIMSKO). TIFRO and TIMSKO are not shown in
the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock
source on the TO pin. The Clock Select logic block controls which clock source and edge
the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is
inactive when no clock source is selected. The output from the Clock Select logic is
referred to as the timer clock (clky).

The double buffered Output Compare Registers (OCROA and OCRO0B) are compared
with the Timer/Counter value at all times. The result of the compare can be used by the
Waveform Generator to generate a PWM or variable frequency output on the Output
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Timer/Counter Clock
Sources

Counter Unit
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Compare pins (OCOA and OCO0B). See “Output Compare Unit” on page 121. for details.
The Compare Match event will also set the Compare Flag (OCFOA or OCFOB) which
can be used to generate an Output Compare interrupt request.

Many register and bit references in this section are written in general form. A lower case
“n” replaces the Timer/Counter number, in this case 0. A lower case “X” replaces the
Output Compare Unit, in this case Compare Unit A or Compare Unit B. However, when
using the register or bit defines in a program, the precise form must be used, i.e.,
TCNTO for accessing Timer/CounterQ counter value and so on.

The definitions in Table 72 are also used extensively throughout the document.
Table 72. Definitions
BOTTOM | The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value OxFF (MAX) or the value stored in the OCROA Register. The
assignment is dependent on the mode of operation.

The Timer/Counter can be clocked by an internal or an external clock source. The clock
source is selected by the Clock Select logic which is controlled by the Clock Select
(CS02:0) bits located in the Timer/Counter Control Register (TCCROB). For details on
clock sources and prescaler, see “Timer/Counter 0, 1, 3, 4, and 5 Prescaler” on page
172.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit.
Figure 38 shows a block diagram of the counter and its surroundings.

Figure 38. Counter Unit Block Diagram
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Signal description (internal signals):
count Increment or decrement TCNTO by 1.

direction Select between increment and decrement.

clear Clear TCNTO (set all bits to zero).
clky, Timer/Counter clock, referred to as clky, in the following.
top Signalize that TCNTO has reached maximum value.

bottom Signalize that TCNTO has reached minimum value (zero).
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Depending of the mode of operation used, the counter is cleared, incremented, or dec-
remented at each timer clock (clky). clkyy can be generated from an external or internal
clock source, selected by the Clock Select bits (CS02:0). When no clock source is
selected (CS02:0 = 0) the timer is stopped. However, the TCNTO value can be accessed
by the CPU, regardless of whether clky is present or not. A CPU write overrides (has
priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits
located in the Timer/Counter Control Register (TCCROA) and the WGMO02 bit located in
the Timer/Counter Control Register B (TCCROB). There are close connections between
how the counter behaves (counts) and how waveforms are generated on the Output
Compare outputs OCOA and OCOB. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 124.

The Timer/Counter Overflow Flag (TOVO0) is set according to the mode of operation
selected by the WGMO02:0 bits. TOVO can be used for generating a CPU interrupt.

The 8-bit comparator continuously compares TCNTO with the Output Compare Regis-
ters (OCROA and OCROB). Whenever TCNTO equals OCROA or OCROB, the
comparator signals a match. A match will set the Output Compare Flag (OCFOA or
OCFO0B) at the next timer clock cycle. If the corresponding interrupt is enabled, the Out-
put Compare Flag generates an Output Compare interrupt. The Output Compare Flag is
automatically cleared when the interrupt is executed. Alternatively, the flag can be
cleared by software by writing a logical one to its I/O bit location. The Waveform Gener-
ator uses the match signal to generate an output according to operating mode set by the
WGMO02:0 bits and Compare Output mode (COMOx1:0) bits. The max and bottom sig-
nals are used by the Waveform Generator for handling the special cases of the extreme
values in some modes of operation (“Modes of Operation” on page 124).

Figure 39 shows a block diagram of the Output Compare unit.

Figure 39. Output Compare Unit, Block Diagram
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The OCROx Registers are double buffered when using any of the Pulse Width Modula-
tion (PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of
operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCROx Compare Registers to either top or bottom of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical
PWM pulses, thereby making the output glitch-free.

The OCROx Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCROx Buffer Register, and if double
buffering is disabled the CPU will access the OCROx directly.

In non-PWM waveform generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOCOXx) bit. Forcing Compare
Match will not set the OCFOx Flag or reload/clear the timer, but the OCOx pin will be
updated as if a real Compare Match had occurred (the COMOx1:0 bits settings define
whether the OCOx pin is set, cleared or toggled).

All CPU write operations to the TCNTO Register will block any Compare Match that
occur in the next timer clock cycle, even when the timer is stopped. This feature allows
OCRQOXx to be initialized to the same value as TCNTO without triggering an interrupt when
the Timer/Counter clock is enabled.

Since writing TCNTO in any mode of operation will block all Compare Matches for one
timer clock cycle, there are risks involved when changing TCNTO when using the Output
Compare Unit, independently of whether the Timer/Counter is running or not. If the
value written to TCNTO equals the OCROx value, the Compare Match will be missed,
resulting in incorrect waveform generation. Similarly, do not write the TCNTO value
equal to BOTTOM when the counter is down-counting.

The setup of the OCOx should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OCOx value is to use the Force
Output Compare (FOCOXx) strobe bits in Normal mode. The OCOx Registers keep their
values even when changing between Waveform Generation modes.

Be aware that the COMOx1:0 bits are not double buffered together with the compare
value. Changing the COMOx1:0 bits will take effect immediately.
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Compare Match Output The Compare Output mode (COMOx1:0) bits have two functions. The Waveform Gener-

Unit ator uses the COMOx1:0 bits for defining the Output Compare (OCOx) state at the next
Compare Match. Also, the COMOx1:0 bits control the OCOx pin output source. Figure 40
shows a simplified schematic of the logic affected by the COMO0x1:0 bit setting. The 1/O
Registers, I/0 bits, and I/O pins in the figure are shown in bold. Only the parts of the
general I/O Port Control Registers (DDR and PORT) that are affected by the COMO0x1:0
bits are shown. When referring to the OCOx state, the reference is for the internal OCOx
Register, not the OCOx pin. If a system reset occur, the OCOx Register is reset to “0”.

Figure 40. Compare Match Output Unit, Schematic

—
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The general I/O port function is overridden by the Output Compare (OCO0x) from the
Waveform Generator if either of the COMOx1:0 bits are set. However, the OCOx pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
port pin. The Data Direction Register bit for the OCOx pin (DDR_OCO0x) must be set as
output before the OCOx value is visible on the pin. The port override function is indepen-
dent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OCOx state before
the output is enabled. Note that some COMOx1:0 bit settings are reserved for certain
modes of operation. See “Register Description” on page 130.

Compare Output Mode and The Waveform Generator uses the COMOx1:0 bits differently in Normal, CTC, and PWM

Waveform Generation modes. For all modes, setting the COMO0x1:0 = 0 tells the Waveform Generator that no
action on the OCOx Register is to be performed on the next Compare Match. For com-
pare output actions in the non-PWM modes refer to Table 73 on page 130. For fast
PWM mode, refer to Table 74 on page 130, and for phase correct PWM refer to Table
75 on page 131.

A change of the COMOx1:0 bits state will have effect at the first Compare Match after
the bits are written. For non-PWM modes, the action can be forced to have immediate
effect by using the FOCOx strobe bits.

A IIIEI% 123

2549K-AVR-01/07



Modes of Operation

Normal Mode

Clear Timer on Compare
Match (CTC) Mode
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The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGMO02:0) and
Compare Output mode (COMOx1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COMO0x1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COMOx1:0 bits control whether the out-
put should be set, cleared, or toggled at a Compare Match (See “Compare Match
Output Unit” on page 148.).

For detailed timing information see “Timer/Counter Timing Diagrams” on page 128.

The simplest mode of operation is the Normal mode (WGMO02:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag
(TOVO0) will be set in the same timer clock cycle as the TCNTO becomes zero. The
TOVO Flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOVO
Flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Output Compare Unit can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.

In Clear Timer on Compare or CTC mode (WGMO02:0 = 2), the OCROA Register is used
to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNTO) matches the OCROA. The OCROA defines the top value for
the counter, hence also its resolution. This mode allows greater control of the Compare
Match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 41. The counter value
(TCNTO) increases until a Compare Match occurs between TCNTO and OCROA, and
then counter (TCNTO) is cleared.

Figure 41. CTC Mode, Timing Diagram
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An interrupt can be generated each time the counter value reaches the TOP value by
using the OCFOA Flag. If the interrupt is enabled, the interrupt handler routine can be
used for updating the TOP value. However, changing TOP to a value close to BOTTOM
when the counter is running with none or a low prescaler value must be done with care
since the CTC mode does not have the double buffering feature. If the new value written
to OCROA is lower than the current value of TCNTO, the counter will miss the Compare
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Match. The counter will then have to count to its maximum value (OxFF) and wrap
around starting at 0x00 before the Compare Match can occur.

For generating a waveform output in CTC mode, the OCOA output can be set to toggle
its logical level on each Compare Match by setting the Compare Output mode bits to
toggle mode (COMOA1:0 = 1). The OCOA value will not be visible on the port pin unless
the data direction for the pin is set to output. The waveform generated will have a maxi-
mum frequency of fogy = o 1o/2 when OCROA is set to zero (0x00). The waveform
frequency is defined by the following equation:

(. fen o
OCnx' ™ 2N . (1 + OCRnXx)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO Flag is set in the same timer clock cycle
that the counter counts from MAX to 0x00.

The fast Pulse Width Modulation or fast PWM mode (WGMO02:0 = 3 or 7) provides a high
frequency PWM waveform generation option. The fast PWM differs from the other PWM
option by its single-slope operation. The counter counts from BOTTOM to TOP then
restarts from BOTTOM. TOP is defined as OxFF when WGM2:0 = 3, and OCROA when
WGM2:0 = 7. In non-inverting Compare Output mode, the Output Compare (OCOx) is
cleared on the Compare Match between TCNTO and OCROx, and set at BOTTOM. In
inverting Compare Output mode, the output is set on Compare Match and cleared at
BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM
mode can be twice as high as the phase correct PWM mode that use dual-slope opera-
tion. This high frequency makes the fast PWM mode well suited for power regulation,
rectification, and DAC applications. High frequency allows physically small sized exter-
nal components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP
value. The counter is then cleared at the following timer clock cycle. The timing diagram
for the fast PWM mode is shown in Figure 42. The TCNTO value is in the timing diagram
shown as a histogram for illustrating the single-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTO
slopes represent Compare Matches between OCROx and TCNTO.

Figure 42. Fast PWM Mode, Timing Diagram
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Phase Correct PWM Mode
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The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches TOP. If
the interrupt is enabled, the interrupt handler routine can be used for updating the com-
pare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the
OCOx pins. Setting the COMO0x1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COMOx1:0 to three: Setting the
COMOAT1:0 bits to one allows the OCOA pin to toggle on Compare Matches if the
WGMO2 bit is set. This option is not available for the OCOB pin (See Table 74 on page
130). The actual OCOx value will only be visible on the port pin if the data direction for
the port pin is set as output. The PWM waveform is generated by setting (or clearing)
the OCOx Register at the Compare Match between OCROx and TCNTO, and clearing (or
setting) the OCOx Register at the timer clock cycle the counter is cleared (changes from
TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

¢ _ oo
OCnxPWM N - 256

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represents special cases when generating
a PWM waveform output in the fast PWM mode. If the OCROA is set equal to BOTTOM,
the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCROA
equal to MAX will result in a constantly high or low output (depending on the polarity of
the output set by the COMOA1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OCOx to toggle its logical level on each Compare Match (COMO0x1:0 = 1). The
waveform generated will have a maximum frequency of focq = fo j0/2 when OCROA is
set to zero. This feature is similar to the OCOA toggle in CTC mode, except the double
buffer feature of the Output Compare unit is enabled in the fast PWM mode.

The phase correct PWM mode (WGMO02:0 = 1 or 5) provides a high resolution phase
correct PWM waveform generation option. The phase correct PWM mode is based on a
dual-slope operation. The counter counts repeatedly from BOTTOM to TOP and then
from TOP to BOTTOM. TOP is defined as OxFF when WGM2:0 = 1, and OCROA when
WGM2:0 = 5. In non-inverting Compare Output mode, the Output Compare (OCOx) is
cleared on the Compare Match between TCNTO and OCROx while upcounting, and set
on the Compare Match while down-counting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency
than single slope operation. However, due to the symmetric feature of the dual-slope
PWM modes, these modes are preferred for motor control applications.

In phase correct PWM mode the counter is incremented until the counter value matches
TOP. When the counter reaches TOP, it changes the count direction. The TCNTO value
will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct
PWM mode is shown on Figure 43. The TCNTO value is in the timing diagram shown as
a histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNTO slopes repre-
sent Compare Matches between OCROx and TCNTO.
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Figure 43. Phase Correct PWM Mode, Timing Diagram
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The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches BOT-
TOM. The Interrupt Flag can be used to generate an interrupt each time the counter
reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on
the OCOx pins. Setting the COMOx1:0 bits to two will produce a non-inverted PWM. An
inverted PWM output can be generated by setting the COMO0x1:0 to three: Setting the
COMOAO bits to one allows the OCOA pin to toggle on Compare Matches if the WGMO02
bit is set. This option is not available for the OCOB pin (See Table 75 on page 131). The
actual OCOx value will only be visible on the port pin if the data direction for the port pin
is set as output. The PWM waveform is generated by clearing (or setting) the OCOx
Register at the Compare Match between OCROx and TCNTO when the counter incre-
ments, and setting (or clearing) the OCOx Register at Compare Match between OCROx
and TCNTO when the counter decrements. The PWM frequency for the output when
using phase correct PWM can be calculated by the following equation:

¢ _ fex o
OCnxPCPWM N-510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCROA is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.

At the very start of period 2 in Figure 43 OCnx has a transition from high to low even
though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.

*  OCROA changes its value from MAX, like in Figure 43. When the OCROA value is
MAX the OCn pin value is the same as the result of a down-counting Compare
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Match. To ensure symmetry around BOTTOM the OCn value at MAX must
correspond to the result of an up-counting Compare Match.

e The timer starts counting from a value higher than the one in OCROA, and for that
reason misses the Compare Match and hence the OCn change that would have
happened on the way up.

Timer/Counter Timing
Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkyg) is therefore
shown as a clock enable signal in the following figures. The figures include information

on when Interrupt Flags are set. Figure 44 contains timing data for basic Timer/Counter
operation. The figure shows the count sequence close to the MAX value in all modes
other than phase correct PWM mode.

Figure 44. Timer/Counter Timing Diagram, no Prescaling
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Figure 45 shows the same timing data, but with the prescaler enabled.

Figure 45. Timer/Counter Timing Diagram, with Prescaler (f. ,,0/8)
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Figure 46 shows the setting of OCFOB in all modes and OCFOA in all modes except
CTC mode and PWM mode, where OCROA is TOP.

Figure 46. Timer/Counter Timing Diagram, Setting of OCFOx, with Prescaler (. ,o/8)
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Figure 47 shows the setting of OCFOA and the clearing of TCNTO in CTC mode and fast
PWM mode where OCROA is TOP.

Figure 47. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with
Prescaler (fy ,0/8)
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Register Description

TCCROA - Timer/Counter
Control Register A

ATMEL

Bit 7 6 5 4 3 2 1 0
0x24 (0x44) I COMOA1 | COMOAO | COMOB1 | COMOBO - - WGMO1 | WGMO00 I TCCROA
Read/Write R/W R/W R/W R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7:6 — COMOA1:0: Compare Match Output A Mode

These bits control the Output Compare pin (OC0A) behavior. If one or both of the
COMOA1:0 bits are set, the OCOA output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit cor-
responding to the OCOA pin must be set in order to enable the output driver.

When OCOA is connected to the pin, the function of the COMOAT1:0 bits depends on the
WGMO02:0 bit setting. Table 73 shows the COMOA1:0 bit functionality when the
WGMO02:0 bits are set to a normal or CTC mode (non-PWM).

Table 73. Compare Output Mode, non-PWM Mode

COMOA1 COMOAO | Description
0 0 Normal port operation, OCOA disconnected.
0 1 Toggle OCOA on Compare Match
1 0 Clear OCOA on Compare Match
1 1 Set OCOA on Compare Match

Table 74 shows the COMOA1:0 bit functionality when the WGMO01:0 bits are set to fast

PWM mode.
Table 74. Compare Output Mode, Fast PWM Mode(")
COMOA1 COMOAO | Description
0 0 Normal port operation, OCOA disconnected.
0 1 WGMO2 = 0: Normal Port Operation, OCOA Disconnected.
WGMO2 = 1: Toggle OCOA on Compare Match.
1 0 Clear OCOA on Compare Match, set OCOA at BOTTOM,
(non-inverting mode).
1 1 Set OCOA on Compare Match, clear OCOA at BOTTOM,
(inverting mode).
Note: 1. A special case occurs when OCROA equals TOP and COMOAT1 is set. In this case,

the Compare Match is ignored, but the set or clear is done at BOTTOM. See “Fast
PWM Mode” on page 125 for more details.

Table 75 on page 131 shows the COMOAT1:0 bit functionality when the WGMO02:0 bits
are set to phase correct PWM mode.

130  ATmega640/1280/1281/2560/2561 m————

2549K-AVR-01/07



| ATmega640/1 280/1281/2560/2561

Table 75. Compare Output Mode, Phase Correct PWM Mode!"

COMOA1

COMOAO0

Description

0

0

Normal port operation, OCOA disconnected.

0

1

WGMO2 = 0: Normal Port Operation, OCOA Disconnected.

WGMO02 = 1: Toggle OCOA on Compare Match.

Clear OCOA on Compare Match when up-counting. Set OCOA on
Compare Match when down-counting.

Set OCOA on Compare Match when up-counting. Clear OCOA on
Compare Match when down-counting.

Note: 1. A special case occurs when OCROA equals TOP and COMOAT is set. In this case,

the Compare Match is ignored, but the set or clear is done at TOP. See “Phase Cor-
rect PWM Mode” on page 126 for more details.

¢ Bits 5:4 — COM0B1:0: Compare Match Output B Mode

These bits control the Output Compare pin (OCOB) behavior. If one or both of the
COMOB1:0 bits are set, the OCOB output overrides the normal port functionality of the
I/0O pin it is connected to. However, note that the Data Direction Register (DDR) bit cor-
responding to the OCOB pin must be set in order to enable the output driver.

When OCOB is connected to the pin, the function of the COMOB1:0 bits depends on the
WGMO02:0 bit setting. Table 73 shows the COMOA1:0 bit functionality when the
WGMO02:0 bits are set to a normal or CTC mode (non-PWM).

Table 76. Compare Output Mode, non-PWM Mode

2549K-AVR-01/07

COMOB1 COMOBO | Description
0 0 Normal port operation, OCOB disconnected.
0 1 Toggle OCOB on Compare Match
1 0 Clear OCOB on Compare Match
1 1 Set OCOB on Compare Match

Table 74 shows the COMOB1:0 bit functionality when the WGMO02:0 bits are set to fast
PWM mode.

Table 77. Compare Output Mode, Fast PWM Mode(")

COMOB1 COMO0BO | Description

0 0 Normal port operation, OCOB disconnected.

0 1 Reserved

1 0 Clear OCOB on Compare Match, set OCOB at BOTTOM,
(non-inverting mode).

1 1 Set OCOB on Compare Match, clear OCOB at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCROB equals TOP and COMOB1 is set. In this case,

the Compare Match is ignored, but the set or clear is done at BOTTOM. See “Fast
PWM Mode” on page 125 for more details.
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Table 75 shows the COMOB1:0 bit functionality when the WGMO02:0 bits are set to
phase correct PWM mode.

Table 78. Compare Output Mode, Phase Correct PWM Mode!"
COMOB1 COMOBO | Description

0 0 Normal port operation, OCOB disconnected.
0 1 Reserved
1 0 Clear OCOB on Compare Match when up-counting. Set OCOB on

Compare Match when down-counting.

1 1 Set OCOB on Compare Match when up-counting. Clear OCOB on
Compare Match when down-counting.

Note: 1. A special case occurs when OCROB equals TOP and COMOBH1 is set. In this case,
the Compare Match is ignored, but the set or clear is done at TOP. See “Phase Cor-
rect PWM Mode” on page 126 for more details.

e Bits 3, 2 — Res: Reserved Bits

These bits are reserved bits and will always read as zero.

¢ Bits 1:0 - WGMO01:0: Waveform Generation Mode

Combined with the WGMO02 bit found in the TCCROB Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used, see Table 79. Modes of operation sup-
ported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare
Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes (see
“Modes of Operation” on page 149).

Table 79. Waveform Generation Mode Bit Description

Timer/Counter
Mode of Update of | TOV Fla
Mode | WGM2 | WGM1 | WGMO | Operation TOP | OCRxat | Seton®

0 0 0 0 Normal OxFF | Immediate MAX

1 0 0 1 PWM, Phase OxFF TOP BOTTOM
Correct

2 0 1 0 CTC OCRA | Immediate MAX

3 0 1 1 Fast PWM OxFF TOP MAX

4 1 0 0 Reserved - - -

5 1 0 1 PWM, Phase OCRA TOP BOTTOM
Correct

6 1 1 0 Reserved - - -

7 1 1 1 Fast PWM OCRA | BOTTOM TOP

Notes: 1. MAX = OxFF

2. BOTTOM = 0x00
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Bit 7 6 5 4 3 2 1 0
0x25 (0x45) | FOCOA FOCOB - - WGMO02 CS02 Cso1 csoo | Tccros
Read/Write w w R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCOA: Force Output Compare A
The FOCOA bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCROB is written when operating in PWM mode. When writing a logical one to the
FOCOA bit, an immediate Compare Match is forced on the Waveform Generation unit.
The OCOA output is changed according to its COMOAT1:0 bits setting. Note that the
FOCOA bit is implemented as a strobe. Therefore it is the value present in the
COMOAT1:0 bits that determines the effect of the forced compare.

A FOCOA strobe will not generate any interrupt, nor will it clear the timer in CTC mode
using OCROA as TOP.

The FOCOA bit is always read as zero.

e Bit 6 — FOCOB: Force Output Compare B
The FOCOB bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCROB is written when operating in PWM mode. When writing a logical one to the
FOCOB bit, an immediate Compare Match is forced on the Waveform Generation unit.
The OCOB output is changed according to its COMOB1:0 bits setting. Note that the
FOCOB bit is implemented as a strobe. Therefore it is the value present in the
COMOB1:0 bits that determines the effect of the forced compare.

A FOCOB strobe will not generate any interrupt, nor will it clear the timer in CTC mode
using OCROB as TOP.

The FOCOB bit is always read as zero.

¢ Bits 5:4 — Res: Reserved Bits

These bits are reserved bits and will always read as zero.

* Bit 3 - WGMO02: Waveform Generation Mode
See the description in the “TCCROA — Timer/Counter Control Register A” on page 130.

¢ Bits 2:0 — CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see
Table 80 on page 134.
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Table 80. Clock Select Bit Description

CS02 | CS01 | CS00 | Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clk;,o/(No prescaling)

0 1 0 clk;,o/8 (From prescaler)

0 1 1 clk;o/64 (From prescaler)

1 0 0 clk;,0/256 (From prescaler)

1 0 1 clkyo/1024 (From prescaler)

1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting.

Bit 7 6 5 4 3 2 1 0
0x26 (0x46) | TCNTO[7:0] | TCNTO
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to
the Timer/Counter unit 8-bit counter. Writing to the TCNTO Register blocks (removes)
the Compare Match on the following timer clock. Modifying the counter (TCNTO) while
the counter is running, introduces a risk of missing a Compare Match between TCNTO
and the OCROx Registers.

Bit 7 6 5 4 3 2 1 0
ox27 (0x47) | OCROA[7:0] ] ocroa
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared
with the counter value (TCNTO). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OCOA pin.

Bit 7 6 5 4 3 2 1 0
0x28 (0x48) | OCROBI[7:0] | OCROB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register B contains an 8-bit value that is continuously compared
with the counter value (TCNTO). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OCOB pin.
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Bit 7 6 5 4 3 2 1 0
(OX6E) | - - - - - OCIEOB | OCIEOA | TOIEO | TIMSKO
Read/Write R R R R R RW RW R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:3, 0 — Res: Reserved Bits

These bits are reserved bits and will always read as zero.

¢ Bit 2 — OCIEOB: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIEOB bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is
executed if a Compare Match in Timer/Counter occurs, i.e., when the OCFOB bit is set in
the Timer/Counter Interrupt Flag Register — TIFRO.

e Bit 1 — OCIEOA: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIEOA bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is
executed if a Compare Match in Timer/CounterQ occurs, i.e., when the OCFOA bit is set
in the Timer/Counter O Interrupt Flag Register — TIFRO.

e Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter0 occurs, i.e., when the TOVO bit is set in the
Timer/Counter 0 Interrupt Flag Register — TIFRO.

Bit 7 6 5 4 3 2 1 0
ox15(0x35) | - - - - - OCFOB | OCFOA | TOVO | TIFRO
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:3, 0 — Res: Reserved Bits

These bits are reserved bits and will always read as zero.

e Bit 2 — OCFOB: Timer/Counter 0 Output Compare B Match Flag

The OCFOB bit is set when a Compare Match occurs between the Timer/Counter and
the data in OCROB — Output Compare Register0 B. OCFOB is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCFOB is
cleared by writing a logic one to the flag. When the I-bit in SREG, OCIEOB
(Timer/Counter Compare B Match Interrupt Enable), and OCFOB are set, the
Timer/Counter Compare Match Interrupt is executed.

e Bit 1 — OCFOA: Timer/Counter 0 Output Compare A Match Flag

The OCFOA bit is set when a Compare Match occurs between the Timer/Counter0 and
the data in OCROA — Output Compare Register0. OCFOA is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, OCFOA is cleared
by writing a logic one to the flag. When the I-bit in SREG, OCIEOA (Timer/Counter0
Compare Match Interrupt Enable), and OCFOA are set, the Timer/Counter0 Compare
Match Interrupt is executed.
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* Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set when an overflow occurs in Timer/Counter0. TOVO is cleared by
hardware when executing the corresponding interrupt handling vector. Alternatively,
TOVO is cleared by writing a logic one to the flag. When the SREG I-bit, TOIEO
(Timer/Counter0 Overflow Interrupt Enable), and TOVO are set, the Timer/Counter0
Overflow interrupt is executed.

The setting of this flag is dependent of the WGMO02:0 bit setting. Refer to Table 79,
“Waveform Generation Mode Bit Description” on page 132.
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The 16-bit Timer/Counter unit allows accurate program execution timing (event man-
agement), wave generation, and signal timing measurement. The main features are:

* True 16-bit Design (i.e., Allows 16-bit PWM)

* Three independent Output Compare Units

¢ Double Buffered Output Compare Registers

¢ One Input Capture Unit

¢ Input Capture Noise Canceler

¢ Clear Timer on Compare Match (Auto Reload)

¢ Glitch-free, Phase Correct Pulse Width Modulator (PWM)

* Variable PWM Period

* Frequency Generator

¢ External Event Counter

* Twenty independent interrupt sources (TOV1, OCF1A, OCF1B, OCF1C, ICF1, TOV3,
OCF3A, OCF3B, OCF3C, ICF3, TOV4, OCF4A, OCF4B, OCF4C, ICF4, TOV5, OCF5A,
OCF5B, OCF5C and ICF5)

Most register and bit references in this section are written in general form. A lower case
“n” replaces the Timer/Counter number, and a lower case “X” replaces the Output Com-
pare unit channel. However, when using the register or bit defines in a program, the
precise form must be used, i.e., TCNT1 for accessing Timer/Counter1 counter value
and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 48. For the
actual placement of I/O pins, see “TQFP-pinout ATmega640/1280/2560” on page 2 and
“Pinout ATmega1281/2561” on page 4. CPU accessible 1/0 Registers, including I/O bits
and /O pins, are shown in bold. The device-specific I/O Register and bit locations are
listed in the “Register Description” on page 160.

The Power Reduction Timer/Counter1 bit, PRTIM1, in “PRRO — Power Reduction Regis-
ter 0” on page 55 must be written to zero to enable Timer/Counter1 module.

The Power Reduction Timer/Counter3 bit, PRTIM3, in “PRR1 — Power Reduction Regis-
ter 1” on page 56 must be written to zero to enable Timer/Counter3 module.

The Power Reduction Timer/Counter4 bit, PRTIM4, in “PRR1 — Power Reduction Regis-
ter 1” on page 56 must be written to zero to enable Timer/Counter4 module.

The Power Reduction Timer/Counter5 bit, PRTIM5, in “PRR1 — Power Reduction Regis-
ter 1” on page 56 must be written to zero to enable Timer/Counter5 module.

Timer/Counter4 and Timer/Counter5 only have full functionality in the
ATmega640/1280/2560. Input capture and output compare are not available in the
ATmega1281/2561.
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Figure 48. 16-bit Timer/Counter Block Diagram("
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Note: 1. Refer to Figure 1 on page 2, Table 41 on page 92, and Table 47 on page 96 for
Timer/Counter1 and 3 and 3 pin placement and description.

The Timer/Counter (TCNTn), Output Compare Registers (OCRnA/B/C), and Input Cap-
ture Register (ICRn) are all 16-bit registers. Special procedures must be followed when
accessing the 16-bit registers. These procedures are described in the section “Access-
ing 16-bit Registers” on page 139. The Timer/Counter Control Registers (TCCRnA/B/C)
are 8-bit registers and have no CPU access restrictions. Interrupt requests (shorten as
Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFRn). All interrupts
are individually masked with the Timer Interrupt Mask Register (TIMSKn). TIFRn and
TIMSKn are not shown in the figure since these registers are shared by other timer
units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock
source on the Tn pin. The Clock Select logic block controls which clock source and edge
the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is
inactive when no clock source is selected. The output from the clock select logic is
referred to as the timer clock (clky,).

The double buffered Output Compare Registers (OCRnA/B/C) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform
Generator to generate a PWM or variable frequency output on the Output Compare pin
(OCnA/B/C). See “Output Compare Units” on page 146.. The compare match event will

ATmega640/1280/1281/2560/2561 m———

2549K-AVR-01/07



| ATmega640/1 280/1281/2560/2561

Definitions

Accessing 16-bit
Registers

2549K-AVR-01/07

also set the Compare Match Flag (OCFnA/B/C) which can be used to generate an Out-
put Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external
(edge triggered) event on either the Input Capture pin (ICPn) or on the Analog Compar-
ator pins (See “AC — Analog Comparator” on page 275.) The Input Capture unit includes
a digital filtering unit (Noise Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be
defined by either the OCRnA Register, the ICRn Register, or by a set of fixed values.
When using OCRnA as TOP value in a PWM mode, the OCRnA Register can not be
used for generating a PWM output. However, the TOP value will in this case be double
buffered allowing the TOP value to be changed in run time. If a fixed TOP value is
required, the ICRn Register can be used as an alternative, freeing the OCRnNA to be
used as PWM output.

The following definitions are used extensively throughout the document:
Table 81. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal 65535).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be one of the fixed values:
0x00FF, 0xO01FF, or OXO3FF, or to the value stored in the OCRnA or ICRn
Register. The assignment is dependent of the mode of operation.

The TCNTn, OCRNnA/B/C, and ICRn are 16-bit registers that can be accessed by the
AVR CPU via the 8-bit data bus. The 16-bit register must be byte accessed using two
read or write operations. Each 16-bit timer has a single 8-bit register for temporary stor-
ing of the high byte of the 16-bit access. The same Temporary Register is shared
between all 16-bit registers within each 16-bit timer. Accessing the low byte triggers the
16-bit read or write operation. When the low byte of a 16-bit register is written by the
CPU, the high byte stored in the Temporary Register, and the low byte written are both
copied into the 16-bit register in the same clock cycle. When the low byte of a 16-bit reg-
ister is read by the CPU, the high byte of the 16-bit register is copied into the Temporary
Register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the Temporary Register for the high byte. Reading the
OCRNA/B/C 16-bit registers does not involve using the Temporary Register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read,
the low byte must be read before the high byte.

The following code examples show how to access the 16-bit timer registers assuming
that no interrupts updates the temporary register. The same principle can be used
directly for accessing the OCRnA/B/C and ICRn Registers. Note that when using “C”,
the compiler handles the 16-bit access.
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Assembly Code Examples(")

; Set TCNTn to O0xOlFF

1di r17,0x01

1di rl16, OxXFF

out TCNTnH,rl7

out TCNTnL,rl6

; Read TCNTn into rl7:rlé6
in rl6,TCNTnL

in rl7,TCNTnH

C Code Examples("

unsigned int 1i;

/* Set TCNTn to OxO01lFF */
TCNTn = O0x1FF;

/* Read TCNTn into i */

i = TCNTn;

Note: 1. See “About Code Examples” on page 9.
The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an inter-
rupt occurs between the two instructions accessing the 16-bit register, and the interrupt
code updates the temporary register by accessing the same or any other of the 16-bit
Timer Registers, then the result of the access outside the interrupt will be corrupted.
Therefore, when both the main code and the interrupt code update the temporary regis-
ter, the main code must disable the interrupts during the 16-bit access.
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The following code examples show how to do an atomic read of the TCNTn Register

contents. Reading any of the OCRnA/B/C or ICRn Registers can be done by using the
same principle.

Assembly Code Example("

TIM16_ReadTCNTn:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Read TCNTn into rl7:rlé6
in rl6,TCNTnL
in rl17,TCNTnH
; Restore global interrupt flag
out SREG,rl8

ret

C Code Example"

unsigned int TIM16_ReadTCNTn( void )
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
__disable_interrupt() ;
/* Read TCNTn into i */
i = TCNTn;
/* Restore global interrupt flag */
SREG = sreg;

return i;

Note: 1. See “About Code Examples” on page 9.

The assembly code example returns the TCNTn value in the r17:r16 register pair.
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The following code examples show how to do an atomic write of the TCNTn Register
contents. Writing any of the OCRnA/B/C or ICRn Registers can be done by using the
same principle.

Assembly Code Example("

TIM16_WriteTCNTn:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Set TCNTn to rl7:rlé6
out TCNTnH,rl1l7
out TCNTnL,rl6
; Restore global interrupt flag
out SREG,rl8

ret

C Code Example"

void TIM16_WriteTCNTn( unsigned int i )
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
__disable_interrupt();
/* Set TCNTn to i */
TCNTn = i;
/* Restore global interrupt flag */
SREG = sreg;

Note: 1. See “About Code Examples” on page 9.

The assembly code example requires that the r17:r16 register pair contains the value to
be written to TCNTn.

If writing to more than one 16-bit register where the high byte is the same for all registers
written, then the high byte only needs to be written once. However, note that the same
rule of atomic operation described previously also applies in this case.
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Timer/Counter Clock The Timer/Counter can be clocked by an internal or an external clock source. The clock

Sources source is selected by the Clock Select logic which is controlled by the Clock Select
(CSn2:0) bits located in the Timer/Counter control Register B (TCCRnB). For details on
clock sources and prescaler, see “Timer/Counter 0, 1, 3, 4, and 5 Prescaler’” on page
172.

Counter Unit The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional
counter unit. Figure 49 shows a block diagram of the counter and its surroundings.

Figure 49. Counter Unit Block Diagram

DATA BUS (s-bit)
-4 o
TOVn
(Int.Req.)
TEMP (8-bit)
Clock Select
Count Edge
- -t Tn
[ ToNTnH(sbiy | TONTAL (8-bit) | Clear olk;, Detector
* Direct Control Logic [«
TCNTn (16-bit Counter) ¢ 2 rection
( From Prescaler)
TTOP TBOTTOM

Signal description (internal signals):
Count Increment or decrement TCNTn by 1.

Direction Select between increment and decrement.

Clear Clear TCNTn (set all bits to zero).
clkq, Timer/Counter clock.
TOP Signalize that TCNTn has reached maximum value.

BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit /O memory locations: Counter High
(TCNTnNH) containing the upper eight bits of the counter, and Counter Low (TCNTnL)
containing the lower eight bits. The TCNTnH Register can only be indirectly accessed
by the CPU. When the CPU does an access to the TCNTnH I/O location, the CPU
accesses the high byte temporary register (TEMP). The temporary register is updated
with the TCNTnH value when the TCNTnL is read, and TCNTnH is updated with the
temporary register value when TCNTnL is written. This allows the CPU to read or write
the entire 16-bit counter value within one clock cycle via the 8-bit data bus. It is impor-
tant to notice that there are special cases of writing to the TCNTn Register when the
counter is counting that will give unpredictable results. The special cases are described
in the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or dec-
remented at each fimer clock (clky,). The clk;, can be generated from an external or
internal clock source, selected by the Clock Select bits (CSn2:0). When no clock source
is selected (CSn2:0 = 0) the timer is stopped. However, the TCNTn value can be
accessed by the CPU, independent of whether clky, is present or not. A CPU write over-
rides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation mode
bits (WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and
TCCRnNB). There are close connections between how the counter behaves (counts) and
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how waveforms are generated on the Output Compare outputs OCnx. For more details
about advanced counting sequences and waveform generation, see “Modes of Opera-
tion” on page 149.

The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation
selected by the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

The Timer/Counter incorporates an input capture unit that can capture external events
and give them a time-stamp indicating time of occurrence. The external signal indicating
an event, or multiple events, can be applied via the ICPn pin or alternatively, for the
Timer/Counter1 only, via the Analog Comparator unit. The time-stamps can then be
used to calculate frequency, duty-cycle, and other features of the signal applied. Alter-
natively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 50. The ele-
ments of the block diagram that are not directly a part of the input capture unit are gray
shaded. The small “n” in register and bit names indicates the Timer/Counter number.

Figure 50. Input Capture Unit Block Diagram
DATA BUS (s-bit)

= t A >
| TEMP @bty |
| ICRnH(8bi) | ICRnL(8bit) | | TCNTnH (8bit) | TCNTnL (8-bit
» WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
* ACO* Acic* ICNC ICES
P Analog o # ¢ ¢
Comparator )
Noise o Edge _
™ canceler > Dotector » ICFn (Int.Req.)
ICPn >

Note:  The Analog Comparator Output (ACO) can only trigger the Timer/Counter1 ICP — not
Timer/Counter3, 4 or 5.

When a change of the logic level (an event) occurs on the Input Capture Pin (ICPn),
alternatively on the analog Comparator output (ACO), and this change confirms to the
setting of the edge detector, a capture will be triggered. When a capture is triggered, the
16-bit value of the counter (TCNTNn) is written to the Input Capture Register (ICRn). The
Input Capture Flag (ICFn) is set at the same system clock as the TCNTn value is copied
into ICRn Register. If enabled (TICIEn = 1), the input capture flag generates an input
capture interrupt. The ICFn flag is automatically cleared when the interrupt is executed.
Alternatively the ICFn flag can be cleared by software by writing a logical one to its 1/0
bit location.
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Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the
low byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high
byte is copied into the high byte Temporary Register (TEMP). When the CPU reads the
ICRNH 1/O location it will access the TEMP Register.

The ICRn Register can only be written when using a Waveform Generation mode that
utilizes the ICRn Register for defining the counter’s TOP value. In these cases the
Waveform Generation mode (WGMn3:0) bits must be set before the TOP value can be
written to the ICRn Register. When writing the ICRn Register the high byte must be writ-
ten to the ICRnH 1/O location before the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit
Registers” on page 139.

The main trigger source for the input capture unit is the Input Capture Pin (ICPn).
Timer/Counter1 can alternatively use the analog comparator output as trigger source for
the input capture unit. The Analog Comparator is selected as trigger source by setting
the analog Comparator Input Capture (ACIC) bit in the Analog Comparator Control and
Status Register (ACSR). Be aware that changing trigger source can trigger a capture.
The input capture flag must therefore be cleared after the change.

Both the Input Capture Pin (ICPn) and the Analog Comparator output (ACO) inputs are
sampled using the same technique as for the Tn pin (Figure 61 on page 172). The edge
detector is also identical. However, when the noise canceler is enabled, additional logic
is inserted before the edge detector, which increases the delay by four system clock
cycles. Note that the input of the noise canceler and edge detector is always enabled
unless the Timer/Counter is set in a Waveform Generation mode that uses ICRn to
define TOP.

An input capture can be triggered by software by controlling the port of the ICPn pin.

The noise canceler improves noise immunity by using a simple digital filtering scheme.
The noise canceler input is monitored over four samples, and all four must be equal for
changing the output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit
in Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler intro-
duces additional four system clock cycles of delay from a change applied to the input, to
the update of the ICRn Register. The noise canceler uses the system clock and is there-
fore not affected by the prescaler.

The main challenge when using the Input Capture unit is to assign enough processor
capacity for handling the incoming events. The time between two events is critical. If the
processor has not read the captured value in the ICRn Register before the next event
occurs, the ICRn will be overwritten with a new value. In this case the result of the cap-
ture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the
interrupt handler routine as possible. Even though the Input Capture interrupt has rela-
tively high priority, the maximum interrupt response time is dependent on the maximum
number of clock cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution)
is actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed
after each capture. Changing the edge sensing must be done as early as possible after
the ICRn Register has been read. After a change of the edge, the Input Capture Flag
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(ICFn) must be cleared by software (writing a logical one to the 1/O bit location). For
measuring frequency only, the clearing of the ICFn Flag is not required (if an interrupt
handler is used).

The 16-bit comparator continuously compares TCNTn with the Output Compare Regis-
ter (OCRnx). If TCNT equals OCRnx the comparator signals a match. A match will set
the Output Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx =
1), the Output Compare Flag generates an Output Compare interrupt. The OCFnx Flag
is automatically cleared when the interrupt is executed. Alternatively the OCFnx Flag
can be cleared by software by writing a logical one to its 1/O bit location. The Waveform
Generator uses the match signal to generate an output according to operating mode set
by the Waveform Generation mode (WGMn3:0) bits and Compare Output mode
(COMnNx1:0) bits. The TOP and BOTTOM signals are used by the Waveform Generator
for handling the special cases of the extreme values in some modes of operation (See
“Modes of Operation” on page 149.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP
value (i.e., counter resolution). In addition to the counter resolution, the TOP value
defines the period time for waveforms generated by the Waveform Generator.

Figure 51 shows a block diagram of the Output Compare unit. The small “n” in the regis-
ter and bit names indicates the device number (n = n for Timer/Counter n), and the “x”
indicates Output Compare unit (A/B/C). The elements of the block diagram that are not
directly a part of the Output Compare unit are gray shaded.

Figure 51. Output Compare Unit, Block Diagram
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The OCRnx Register is double buffered when using any of the twelve Pulse Width Mod-
ulation (PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of
operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCRnx Compare Register to either TOP or BOTTOM of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical
PWM pulses, thereby making the output glitch-free.
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The OCRnx Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCRnx Buffer Register, and if double
buffering is disabled the CPU will access the OCRnx directly. The content of the OCR1x
(Buffer or Compare) Register is only changed by a write operation (the Timer/Counter
does not update this register automatically as the TCNT1 and ICR1 Register). Therefore
OCR1x is not read via the high byte temporary register (TEMP). However, it is a good
practice to read the low byte first as when accessing other 16-bit registers. Writing the
OCRnx Registers must be done via the TEMP Register since the compare of all 16 bits
is done continuously. The high byte (OCRnxH) has to be written first. When the high
byte 1/O location is written by the CPU, the TEMP Register will be updated by the value
written. Then when the low byte (OCRnxL) is written to the lower eight bits, the high byte
will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare Reg-
ister in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit
Registers” on page 139.

In non-PWM Waveform Generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOCnx) bit. Forcing compare
match will not set the OCFnx Flag or reload/clear the timer, but the OCnx pin will be
updated as if a real compare match had occurred (the COMn1:0 bits settings define
whether the OCnx pin is set, cleared or toggled).

All CPU writes to the TCNTn Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCRnx to be
initialized to the same value as TCNTn without triggering an interrupt when the
Timer/Counter clock is enabled.

Since writing TCNTn in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNTn when using any of the
Output Compare channels, independent of whether the Timer/Counter is running or not.
If the value written to TCNTn equals the OCRnx value, the compare match will be
missed, resulting in incorrect waveform generation. Do not write the TCNTn equal to
TOP in PWM modes with variable TOP values. The compare match for the TOP will be
ignored and the counter will continue to OxFFFF. Similarly, do not write the TCNTn value
equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OCnx value is to use the Force
Output Compare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its
value even when changing between Waveform Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare
value. Changing the COMnx1:0 bits will take effect immediately.
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The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Gener-
ator uses the COMnx1:0 bits for defining the Output Compare (OCnx) state at the next
compare match. Secondly the COMnx1:0 bits control the OCnx pin output source. Fig-
ure 52 shows a simplified schematic of the logic affected by the COMnx1:0 bit setting.
The 1/0 Registers, I/0 bits, and 1/O pins in the figure are shown in bold. Only the parts of
the general 1/0 Port Control Registers (DDR and PORT) that are affected by the
COMnNx1:0 bits are shown. When referring to the OCnx state, the reference is for the
internal OCnx Register, not the OCnx pin. If a system reset occur, the OCnx Register is
reset to “0”.

Figure 52. Compare Match Output Unit, Schematic

—
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The general I/O port function is overridden by the Output Compare (OCnx) from the
Waveform Generator if either of the COMnx1:0 bits are set. However, the OCnx pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
port pin. The Data Direction Register bit for the OCnx pin (DDR_OCnx) must be set as
output before the OCnx value is visible on the pin. The port override function is generally
independent of the Waveform Generation mode, but there are some exceptions. Refer
to Table 83, Table 84 and Table 85 for details.

The design of the Output Compare pin logic allows initialization of the OCnx state before
the output is enabled. Note that some COMnx1:0 bit settings are reserved for certain
modes of operation. See “Register Description” on page 160.

The COMnx1:0 bits have no effect on the Input Capture unit.

The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no
action on the OCnx Register is to be performed on the next compare match. For com-
pare output actions in the non-PWM modes refer to Table 83 on page 161. For fast
PWM mode refer to Table 84 on page 161, and for phase correct and phase and fre-
quency correct PWM refer to Table 85 on page 161.
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A change of the COMnx1:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOCnx strobe bits.

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGMn3:0) and
Compare Output mode (COMnx1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COMnx1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COMnx1:0 bits control whether the out-
put should be set, cleared or toggle at a compare match (See “Compare Match Output

Unit” on page 148.)

Table 82. Waveform Generation Mode Bit Description(")

WGMn2 WGMn1 WGMnO | Timer/Counter Update of TOVn Flag
Mode | WGMn3 (CTCn) | (PWMn1) | (PWMnO) | Mode of Operation TOP OCRnNXx at Set on

0 0 0 0 0 Normal OxFFFF | Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit Ox00FF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit O0x01FF | TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit OxO3FF | TOP BOTTOM
4 0 1 0 0 CTC OCRnA | Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit O0x00FF | BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF | BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF | BOTTOM TOP

8 1 0 0 0 PWM, Phase and Frequency ICRn BOTTOM BOTTOM

Correct
9 1 0 0 1 PWM,Phase and Frequency OCRnA | BOTTOM BOTTOM
Correct

10 1 0 1 0 PWM, Phase Correct ICRNn TOP BOTTOM
11 1 0 1 1 PWM, Phase Correct OCRnA | TOP BOTTOM
12 1 1 0 0 CTC ICRn Immediate MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICRn BOTTOM TOP

15 1 1 1 1 Fast PWM OCRnA | BOTTOM TOP

Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and

location of these bits are compatible with previous versions of the timer.
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For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 157.
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The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 16-bit value (MAX = OxFFFF) and
then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Over-
flow Flag (TOVn) will be set in the same timer clock cycle as the TCNTn becomes zero.
The TOVn Flag in this case behaves like a 17th bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOVn
Flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maxi-
mum interval between the external events must not exceed the resolution of the counter.
If the interval between events are too long, the timer overflow interrupt or the prescaler
must be used to extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.

In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRnA or ICRn
Register are used to manipulate the counter resolution. In CTC mode the counter is
cleared to zero when the counter value (TCNTn) matches either the OCRnA (WGMn3:0
= 4) or the ICRn (WGMn3:0 = 12). The OCRNA or ICRn define the top value for the
counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 53. The counter value
(TCNTn) increases until a compare match occurs with either OCRnA or ICRn, and then
counter (TCNTn) is cleared.

Figure 53. CTC Mode, Timing Diagram
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An interrupt can be generated at each time the counter value reaches the TOP value by
either using the OCFnA or ICFn Flag according to the register used to define the TOP
value. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing the TOP to a value close to BOTTOM when the
counter is running with none or a low prescaler value must be done with care since the
CTC mode does not have the double buffering feature. If the new value written to
OCRnNA or ICRn is lower than the current value of TCNTn, the counter will miss the com-
pare match. The counter will then have to count to its maximum value (OxFFFF) and
wrap around starting at 0x0000 before the compare match can occur. In many cases
this feature is not desirable. An alternative will then be to use the fast PWM mode using
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OCRNA for defining TOP (WGMn3:0 = 15) since the OCRnA then will be double
buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle
its logical level on each compare match by setting the Compare Output mode bits to tog-
gle mode (COMNnA1:0 = 1). The OCnA value will not be visible on the port pin unless the
data direction for the pin is set to output (DDR_OCnA = 1). The waveform generated will
have a maximum frequency of focua = foi 110/2 when OCRNA is set to zero (0x0000). The
waveform frequency is defined by the following equation:

6 foi_1o
OCnA ™ 2N . (1+OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn Flag is set in the same timer clock cycle
that the counter counts from MAX to 0x0000.

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) pro-
vides a high frequency PWM waveform generation option. The fast PWM differs from
the other PWM options by its single-slope operation. The counter counts from BOTTOM
to TOP then restarts from BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OCnx) is cleared on the compare match between TCNTn and OCRnx, and
set at BOTTOM. In inverting Compare Output mode output is set on compare match and
cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the
fast PWM mode can be twice as high as the phase correct and phase and frequency
correct PWM modes that use dual-slope operation. This high frequency makes the fast
PWM mode well suited for power regulation, rectification, and DAC applications. High
frequency allows physically small sized external components (coils, capacitors), hence
reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either
ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to
0x00083), and the maximum resolution is 16-bit ICRn or OCRNA set to MAX). The PWM
resolution in bits can be calculated by using the following equation:

R _ log(TOP +1)
FPWM |Og(2)

In fast PWM mode the counter is incremented until the counter value matches either
one of the fixed values OxO0FF, Ox01FF, or OXO3FF (WGMn3:0 = 5, 6, or 7), the value in
ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15). The counter is then
cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is
shown in Figure 54. The figure shows fast PWM mode when OCRNA or ICRn is used to
define TOP. The TCNTn value is in the timing diagram shown as a histogram for illus-
trating the single-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNTn slopes represent compare
matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a com-
pare match occurs.
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Figure 54. Fast PWM Mode, Timing Diagram
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The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In
addition the OCnA or ICFn Flag is set at the same timer clock cycle as TOVn is set
when either OCRNA or ICRn is used for defining the TOP value. If one of the interrupts
are enabled, the interrupt handler routine can be used for updating the TOP and com-
pare values.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx. Note that when using fixed TOP values the unused bits are
masked to zero when any of the OCRnx Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining
the TOP value. The ICRn Register is not double buffered. This means that if ICRn is
changed to a low value when the counter is running with none or a low prescaler value,
there is a risk that the new ICRn value written is lower than the current value of TCNTn.
The result will then be that the counter will miss the compare match at the TOP value.
The counter will then have to count to the MAX value (OxFFFF) and wrap around start-
ing at 0x0000 before the compare match can occur. The OCRnA Register however, is
double buffered. This feature allows the OCRNnA 1I/O location to be written anytime.
When the OCRnNA I/O location is written the value written will be put into the OCRnA
Buffer Register. The OCRnA Compare Register will then be updated with the value in
the Buffer Register at the next timer clock cycle the TCNTn matches TOP. The update is
done at the same timer clock cycle as the TCNTn is cleared and the TOVn Flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By
using ICRn, the OCRNnA Register is free to be used for generating a PWM output on
OCnA. However, if the base PWM frequency is actively changed (by changing the TOP
value), using the OCRNnA as TOP is clearly a better choice due to its double buffer
feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the
OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COMnx1:0 to three (see Table on
page 161). The actual OCnx value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by set-
ting (or clearing) the OCnx Register at the compare match between OCRnx and TCNTNn,

152 ATmega640/1280/1281/2560/2561 m————

2549K-AVR-01/07



| ATmega640/1 280/1281/2560/2561

Phase Correct PWM Mode

2549K-AVR-01/07

and clearing (or setting) the OCnx Register at the timer clock cycle the counter is
cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

¢ __ faxwo
OCnxPWM N - (1 + TOP)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating
a PWM waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM
(0x0000) the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the
OCRnNx equal to TOP will result in a constant high or low output (depending on the polar-
ity of the output set by the COMnx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OCnA to toggle its logical level on each compare match (COMnA1:0 = 1).
This applies only if OCR1A is used to define the TOP value (WGM13:0 = 15). The wave-
form generated will have a maximum frequency of foc,a = fok ,0/2 Wwhen OCRNA is set to
zero (0x0000). This feature is similar to the OCnA toggle in CTC mode, except the dou-
ble buffer feature of the Output Compare unit is enabled in the fast PWM mode.

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1,
2, 3, 10, or 11) provides a high resolution phase correct PWM waveform generation
option. The phase correct PWM mode is, like the phase and frequency correct PWM
mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output
mode, the Output Compare (OCnx) is cleared on the compare match between TCNTn
and OCRnx while upcounting, and set on the compare match while downcounting. In
inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or
defined by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or
OCRnNA set to 0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to
MAX). The PWM resolution in bits can be calculated by using the following equation:

R _ log(TOP + 1)
PCPWM = T o2y

In phase correct PWM mode the counter is incremented until the counter value matches
either one of the fixed values 0x00FF, Ox01FF, or 0x03FF (WGMn3:0 = 1, 2, or 3), the
value in ICRn (WGMn3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter
has then reached the TOP and changes the count direction. The TCNTn value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM
mode is shown on Figure 55. The figure shows phase correct PWM mode when OCRnA
or ICRn is used to define TOP. The TCNTn value is in the timing diagram shown as a
histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be
set when a compare match occurs.
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Figure 55. Phase Correct PWM Mode, Timing Diagram
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The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOT-
TOM. When either OCRnA or ICRn is used for defining the TOP value, the OCnA or
ICFn Flag is set accordingly at the same timer clock cycle as the OCRnx Registers are
updated with the double buffer value (at TOP). The Interrupt Flags can be used to gen-
erate an interrupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx. Note that when using fixed TOP values, the unused bits are
masked to zero when any of the OCRnx Registers are written. As the third period shown
in Figure 55 illustrates, changing the TOP actively while the Timer/Counter is running in
the phase correct mode can result in an unsymmetrical output. The reason for this can
be found in the time of update of the OCRnx Register. Since the OCRnx update occurs
at TOP, the PWM period starts and ends at TOP. This implies that the length of the fall-
ing slope is determined by the previous TOP value, while the length of the rising slope is
determined by the new TOP value. When these two values differ the two slopes of the
period will differ in length. The difference in length gives the unsymmetrical result on the
output.

It is recommended to use the phase and frequency correct mode instead of the phase
correct mode when changing the TOP value while the Timer/Counter is running. When
using a static TOP value there are practically no differences between the two modes of
operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on
the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COMnx1:0 to three (See Table
85 on page 161). The actual OCnx value will only be visible on the port pin if the data
direction for the port pin is set as output (DDR_OCnx). The PWM waveform is gener-
ated by setting (or clearing) the OCnx Register at the compare match between OCRnx
and TCNTn when the counter increments, and clearing (or setting) the OCnx Register at
compare match between OCRnx and TCNTn when the counter decrements. The PWM

15 ATmega640/1280/1281/2560/2561 m————

2549K-AVR-01/07



| ATmega640/1 280/1281/2560/2561

Phase and Frequency Correct
PWM Mode

2549K-AVR-01/07

frequency for the output when using phase correct PWM can be calculated by the fol-
lowing equation:

¢ _fa o
OCnxPCPWM 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 11)
and COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle.

The phase and frequency correct Pulse Width Modulation, or phase and frequency cor-
rect PWM mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency
correct PWM waveform generation option. The phase and frequency correct PWM
mode is, like the phase correct PWM mode, based on a dual-slope operation. The
counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOT-
TOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is cleared
on the compare match between TCNTn and OCRnx while upcounting, and set on the
compare match while downcounting. In inverting Compare Output mode, the operation
is inverted. The dual-slope operation gives a lower maximum operation frequency com-
pared to the single-slope operation. However, due to the symmetric feature of the dual-
slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct
PWM mode is the time the OCRnx Register is updated by the OCRnx Buffer Register,
(see Figure 55 and Figure 56).

The PWM resolution for the phase and frequency correct PWM mode can be defined by
either ICRn or OCRNnA. The minimum resolution allowed is 2-bit (ICRn or OCRNnA set to
0x0003), and the maximum resolution is 16-bit (ICRn or OCRNnA set to MAX). The PWM
resolution in bits can be calculated using the following equation:

. _ 1og(TOP + 1)
PFCPWM — |Og(2)

In phase and frequency correct PWM mode the counter is incremented until the counter
value matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA
(WGMn3:0 = 9). The counter has then reached the TOP and changes the count direc-
tion. The TCNTn value will be equal to TOP for one timer clock cycle. The timing
diagram for the phase correct and frequency correct PWM mode is shown on Figure 56.
The figure shows phase and frequency correct PWM mode when OCRnA or ICRn is
used to define TOP. The TCNTn value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare
matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a com-
pare match occurs.
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Figure 56. Phase and Frequency Correct PWM Mode, Timing Diagram
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OCRNnx/TOP Updateand
t TOVn Interrupt Flag Set
(Interrupt on Bottom)

/\ ¥
TCNTn

OCnx (COMnx1:0 = 2)
OCnx (COMnx1:0 = 3)
Period I 1 I 2 I 3 I 4 |

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the
OCRnNx Registers are updated with the double buffer value (at BOTTOM). When either
OCRnNA or ICRn is used for defining the TOP value, the OCnA or ICFn Flag set when
TCNTn has reached TOP. The Interrupt Flags can then be used to generate an interrupt
each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx.

As Figure 56 shows the output generated is, in contrast to the phase correct mode, sym-
metrical in all periods. Since the OCRnx Registers are updated at BOTTOM, the length
of the rising and the falling slopes will always be equal. This gives symmetrical output
pulses and is therefore frequency correct.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By
using ICRn, the OCRNA Register is free to be used for generating a PWM output on
OCnA. However, if the base PWM frequency is actively changed by changing the TOP
value, using the OCRnA as TOP is clearly a better choice due to its double buffer
feature.

In phase and frequency correct PWM mode, the compare units allow generation of
PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a
non-inverted PWM and an inverted PWM output can be generated by setting the
COMnNx1:0 to three (See Table 85 on page 161). The actual OCnx value will only be vis-
ible on the port pin if the data direction for the port pin is set as output (DDR_OCnx). The
PWM waveform is generated by setting (or clearing) the OCnx Register at the compare
match between OCRnx and TCNTn when the counter increments, and clearing (or set-
ting) the OCnx Register at compare match between OCRnx and TCNTn when the
counter decrements. The PWM frequency for the output when using phase and fre-
quency correct PWM can be calculated by the following equation:

¢ __faco
OCnxPFCPWM 2.N-TOP
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Timer/Counter Timing
Diagrams

2549K-AVR-01/07

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating
a PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be
set to high for non-inverted PWM mode. For inverted PWM the output will have the
opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and
COM1A1:0 =1, the OC1A output will toggle with a 50% duty cycle.

The Timer/Counter is a synchronous design and the timer clock (clky,) is therefore
shown as a clock enable signal in the following figures. The figures include information
on when Interrupt Flags are set, and when the OCRnx Register is updated with the
OCRnx buffer value (only for modes utilizing double buffering). Figure 57 shows a timing
diagram for the setting of OCFnx.

Figure 57. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

clk

/10

clkq,
(clk,5/1)

TCNTn X OCRnx - 1 OCRnx OCRnx + 1 X OCRnx + 2

OCRnx OCRnNx Value

OCFnx

Figure 58 shows the same timing data, but with the prescaler enabled.

Figure 58. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (f. ,0/8)

o WA
(C?lfgﬁz;) F F F F

TCNTn X OCRnx - 1 X OCRnNx OCRnx + 1 X OCRnx + 2
OCRnNx OCRnNx Value
OCFnx

Figure 59 shows the count sequence close to TOP in various modes. When using phase
and frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The
timing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by
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BOTTOM+1 and so on. The same renaming applies for modes that set the TOVn Flag

at BOTTOM.

Figure 59. Timer/Counter Timing Diagram, no Prescaling
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Figure 60 shows the same timing data, but with the prescaler enabled.
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Figure 60. Timer/Counter Timing Diagram, with Prescaler (f. ,0/8)
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Register Description

TCCR1A - Timer/Counter 1
Control Register A

TCCR3A - Timer/Counter 3
Control Register A

TCCR4A - Timer/Counter 4
Control Register A

TCCR5A - Timer/Counter 5
Control Register A

ATMEL

Bit 7 6 5 4 3 2 1 0
(0x80) | comiat | comiao | comiB1 | comiBo | comict | comico | wGM11 | WGM10 | TCCR1A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
(0x90) | comsat | comsao | comsB1 | com3Bo | COM3C1 | COM3CO | WGM31 | WGM30 | TCCR3A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
(0XAO) | comaar | comaao | comssi | com4Bo | cOm4Ct | cOM4CO | WGM41 | WGM40 | TCCR4A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
(0x120) | comsa1 | comsao | comsBi1 | cOM5B0 | COMSC1 | COM5CO | WGMS1 | WGMS0 | TCCRSA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:6 — COMnA1:0: Compare Output Mode for Channel A
¢ Bit 5:4 — COMnB1:0: Compare Output Mode for Channel B
¢ Bit 3:2 - COMNnC1:0: Compare Output Mode for Channel C

The COMnA1:0, COMnB1:0, and COMnC1:0 control the output compare pins (OCnA,
OCnB, and OCnC respectively) behavior. If one or both of the COMnA1:0 bits are writ-
ten to one, the OCnA output overrides the normal port functionality of the 1/0 pin it is
connected to. If one or both of the COMNnB1:0 bits are written to one, the OCnB output
overrides the normal port functionality of the 1/O pin it is connected to. If one or both of
the COMNC1:0 bits are written to one, the OCnC output overrides the normal port func-
tionality of the 1/O pin it is connected to. However, note that the Data Direction Register
(DDR) bit corresponding to the OCnA, OCnB or OCnC pin must be set in order to
enable the output driver.

When the OCnA, OCnB or OCnC is connected to the pin, the function of the COMnx1:0
bits is dependent of the WGMn3:0 bits setting. Table 83 shows the COMnx1:0 bit func-
tionality when the WGMn3:0 bits are set to a normal or a CTC mode (non-PWM).

¢ Bit 1:0 - WGMn1:0: Waveform Generation Mode

Combined with the WGMn3:2 bits found in the TCCRnB Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used, see Table 82. Modes of operation sup-
ported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare
match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes. For
more information on the different modes, see “Modes of Operation” on page 149.
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Table 83. Compare Output Mode, non-PWM

COMnA1 | COMnAO
COMnB1 | COMnBO
COMnC1 | COMNnCO | Description

0 0 Normal port operation, OCnA/OCnB/OCnC disconnected.

0 1 Toggle OCnA/OCnB/OCnC on compare match.

1 0 Clear OCnA/OCnB/OCnC on compare match (set output to low level).
1 1 Set OCnA/OCnB/OCnC on compare match (set output to high level).

Table 84 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the
fast PWM mode.

Table 84. Compare Output Mode, Fast PWM

COMnA1 | COMNnAO
COMnB1 | COMnBO
COMnC1 | COMNnCO | Description

0 0 Normal port operation, OCnA/OCnB/OCnC disconnected.

0 1 WGM13:0 = 14 or 15: Toggle OC1A on Compare Match, OC1B and
OC1C disconnected (normal port operation). For all other WGMH1
settings, normal port operation, OC1A/OC1B/OC1C disconnected.

1 0 Clear OCnA/OCnB/OCnC on compare match, set
OCnA/OCnB/OCnC at BOTTOM (non-inverting mode).
1 1 Set OCnA/OCnB/OCnC on compare match, clear

OCnA/OCnB/OCnC at BOTTOM (inverting mode).

Note: A special case occurs when OCRnA/OCRnB/OCRnC equals TOP and
COMnA1/COMnB1/COMNCH1 is set. In this case the compare match is ignored, but the
set or clear is done at BOTTOM. See “Fast PWM Mode” on page 151. for more details.

Table 85 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the
phase correct and frequency correct PWM mode.

Table 85. Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM

COMnA1 | COMnAO
COMnB1 | COMnBO
COMnC1 | COMNnCO | Description

0 0 Normal port operation, OCnA/OCnB/OCnC disconnected.

0 1 WGM13:0 =9 or 11: Toggle OC1A on Compare Match, OC1B and
OC1C disconnected (normal port operation). For all other WGM1
settings, normal port operation, OC1A/OC1B/OC1C disconnected.

1 0 Clear OCnA/OCnB/OCnC on compare match when up-counting. Set
OCnA/OCnB/OCnC on compare match when downcounting.

1 1 Set OCnA/OCnB/OCnC on compare match when up-counting. Clear
OCnA/OCnB/OCnC on compare match when downcounting.

Note: A special case occurs when OCRNA/OCRnB/OCRnC equals TOP and
COMnA1/COMnB1//COMNC1 is set. See “Phase Correct PWM Mode” on page 153. for
more details.
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TCCR1B - Timer/Counter 1
Control Register B

TCCR3B - Timer/Counter 3
Control Register B

TCCR4B - Timer/Counter 4
Control Register B

TCCR5B - Timer/Counter 5
Control Register B

ATMEL

Bit 7 6 5 4 3 2 1 0
(0x81) | 1enet | icEst - WGM13 | WGM12 | CS12 csi1 cs10 | Tccris
Read/Write RW RIW R RIW RIW RIW RW R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
(0x91) | 1cnes | icess - WGM33 | WGM32 | CS32 Cs31 cs30 | Tccrss
Read/Write R/W R/W R R/W RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
(0xA1) | 1cnca | icEsa - WGM43 | WGM42 | CS42 cs41 cs40 | Tccras
Read/Write R/W R/W R R/W RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
(0x121) | rcnes | icEss - WGM53 | WGM52 | CS52 cs51 css50 | Tccrss
Read/Write R/W R/W R R/W RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - ICNCn: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise
Canceler is activated, the input from the Input Capture Pin (ICPn) is filtered. The filter
function requires four successive equal valued samples of the ICPn pin for changing its
output. The input capture is therefore delayed by four Oscillator cycles when the noise
canceler is enabled.

¢ Bit 6 — ICESn: Input Capture Edge Select

This bit selects which edge on the Input Capture Pin (ICPn) that is used to trigger a cap-
ture event. When the ICESn bit is written to zero, a falling (negative) edge is used as
trigger, and when the ICESn bit is written to one, a rising (positive) edge will trigger the
capture.

When a capture is triggered according to the ICESn setting, the counter value is copied
into the Input Capture Register (ICRn). The event will also set the Input Capture Flag
(ICFn), and this can be used to cause an Input Capture Interrupt, if this interrupt is
enabled.

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in
the TCCRnA and the TCCRnB Register), the ICPn is disconnected and consequently
the input capture function is disabled.

¢ Bit 5 — Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit
must be written to zero when TCCRnB is written.

¢ Bit 4:3 - WGMn3:2: Waveform Generation Mode
See TCCRnNA Register description.
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¢ Bit 2:0 - CSn2:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter, see
Figure 57 and Figure 58.

Table 86. Clock Select Bit Description

CSn2 CSn1 CSn0 | Description
0 0 0 No clock source. (Timer/Counter stopped)
0 0 1 clk,o/1 (No prescaling
0 1 0 clk,,o/8 (From prescaler)
0 1 1 clk,o/64 (From prescaler)
1 0 0 clk,/256 (From prescaler)
1 0 1 clk,o/1024 (From prescaler)
1 1 0 External clock source on Tn pin. Clock on falling edge
1 1 1 External clock source on Tn pin. Clock on rising edge

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting.
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TCCR1C - Timer/Counter 1
Control Register C

TCCR3C - Timer/Counter 3
Control Register C

TCCRA4C - Timer/Counter 4
Control Register C

TCCR5C - Timer/Counter 5
Control Register C

ATMEL

Bit 7 6 5 4 3 2 1 0
(0x82) | Focia | FociB | Focic - - - | Tceric
Read/Write w w w R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x92) | Focsa | FocsB | Focsc - | TccRrsc
Read/Write w W w R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xA2) | Focaa | FocaB | Focac - - - ] Tccrac
Read/Write w W w R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x122) | Focsa | Focse | Focsc - - - ] Tcerse
Read/Write w W w R

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 - FOCnA: Force Output Compare for Channel A
* Bit 6 - FOCnB: Force Output Compare for Channel B
* Bit 5 - FOCnC: Force Output Compare for Channel C

The FOCnA/FOCnB/FOCNC bits are only active when the WGMn3:0 bits specifies a
non-PWM mode. When writing a logical one to the FOCnA/FOCnB/FOCNC bit, an
immediate compare match is forced on the waveform generation unit. The
OCnA/OCnB/OCnC output is changed according to its COMnx1:0 bits setting. Note that
the FOCnA/FOCNnB/FOCNC bits are implemented as strobes. Therefore it is the value
present in the COMnx1:0 bits that determine the effect of the forced compare.

A FOCnA/FOCnB/FOCNC strobe will not generate any interrupt nor will it clear the timer
in Clear Timer on Compare Match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCNnB/FOCNB bits are always read as zero.
¢ Bit 4:0 — Reserved Bits

These bits are reserved for future use. For ensuring compatibility with future devices,
these bits must be written to zero when TCCRNC is written.
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TCNT1H and TCNT1L -
Timer/Counter 1

TCNT3H and TCNT3L -
Timer/Counter 3

TCNT4H and TCNTA4L -
Timer/Counter 4

TCNT5H and TCNT5L —
Timer/Counter 5

2549K-AVR-01/07

Bit

(0x85)
(0x84)
Read/Write
Initial Value

Bit

(0x95)
(0x94)
Read/Write
Initial Value

Bit

(OxA5)
(0xA4)
Read/Write
Initial Value

Bit

(0x125)
(0x124)
Read/Write
Initial Value

7 6 5 4 3 2 1 0
TCNT1[15:8]
TCNT1[7:0]

RW RIW RIW RIW RIW RW RW RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

TCNT3[15:8]
TCNT3[7:0]

R/W R/W RW RW R/W R/W R/W RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

TCNTA4[15:8]
TCNT4[7:0]

R/W R/W RW RW R/W R/W RW RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

TCNT5[15:8]
TCNT5[7:0]

R/W R/W RW RW R/W R/W R/W RW

0 0 0 0 0 0 0 0

TCNT1H
TCNT1L

TCNT3H
TCNT3L

TCNT4H
TCNT4L

TCNT5H
TCNT5L

The two Timer/Counter 1/O locations (TCNTnH and TCNTnL, combined TCNTn) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit
counter. To ensure that both the high and low bytes are read and written simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit tempo-
rary High Byte Register (TEMP). This temporary reqister is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 139.

Modifying the counter (TCNTn) while the counter is running introduces a risk of missing

a compare match between TCNTn and one of the OCRnx Registers.

Writing to the TCNTn Register blocks (removes) the compare match on the following
timer clock for all compare units.
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OCR1AH and OCR1AL —
Output Compare Register 1 A

OCR1BH and OCR1BL —
Output Compare Register 1 B

OCR1CH and OCR1CL -
Output Compare Register 1 C

OCR3AH and OCR3AL -
Output Compare Register 3 A

OCR3BH and OCR3BL -
Output Compare Register 3 B

OCR3CH and OCR3CL -
Output Compare Register 3 C

OCR4AH and OCR4AL -
Output Compare Register 4 A

OCR4BH and OCR4BL -
Output Compare Register 4 B

Bit

(0x89)
(0x88)
Read/Write
Initial Value

Bit

(0x8B)
(Ox8A)
Read/Write
Initial Value

Bit

(0x8D)
(0x8C)
Read/Write
Initial Value

Bit

(0x99)
(0x98)
Read/Write
Initial Value

Bit

(0x9B)
(0x9A)
Read/Write
Initial Value

Bit

(0x9D)
(0x9C)
Read/Write
Initial Value

Bit

(OxA9)
(OxA8)
Read/Write
Initial Value

Bit

(OxAA)
(OxAB)
Read/Write
Initial Value

ATMEL

7 6 5 4 3 2 1 0
OCR1A[15:8]
OCR1A[7:0]

RW RIW RIW RIW RIW RW RW RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

OCR1B[15:8]
OCR1B[7:0]

R/W R/W RW RW R/W R/W R/W RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

OCR1C[15:8]
OCR1C[7:0]

R/W R/W RW RW R/W R/W R/W RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

OCR3A[15:8]
OCR3A[7:0]

R/W R/W RW RW R/W R/W RW RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

OCR3B[15:8]
OCR3BI[7:0]

R/W R/W RW RW R/W R/W R/W RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

OCR3C[15:8]
OCR3CI[7:0]

RW R/W RW RW R/W R/W R/W RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

OCRA4A[15:8]
OCRA4A[7:0]

RW RW RIW RIW RIW RIW RW RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

OCRA4B[15:8]
OCR4B([7:0]

RW RW RIW RIW RIW RIW RW RW

0 0 0 0 0 0 0 0

OCR1AH
OCR1AL

OCR1BH
OCR1BL

OCR1CH
OCR1CL

OCR3AH
OCR3AL

OCR3BH
OCR3BL

OCR3CH
OCR3CL

OCR4AH
OCR4AL

OCR4BH
OCR4BL
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OCRA4CH and OCR4CL -
Output Compare Register 4 C

OCR5AH and OCR5AL —
Output Compare Register 5 A

OCR5BH and OCR5BL -
Output Compare Register 5 B

OCR5CH and OCR5CL -
Output Compare Register 5 C

2549K-AVR-01/07

Bit

(OxAD)
(OXAC)
Read/Write
Initial Value

Bit

(0x129)
(0x128)
Read/Write
Initial Value

Bit

(0x12B)
(0x12A)
Read/Write
Initial Value

Bit

(0x12D)
(0x12C)
Read/Write
Initial Value

7 6 5 4 3 2 1 0
OCRA4C[15:8]
OCRA4CI[7:0]

RW RIW RIW RIW RIW RW RW RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

OCRS5A[15:8]
OCRS5A[7:0]

R/W R/W RW RW R/W R/W R/W RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

OCRS5B[15:8]
OCR5BI[7:0]

R/W R/W RW RW R/W R/W R/W RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

OCRS5C[15:8]
OCRS5CI[7:0]

R/W R/W RW RW R/W R/W RW RW

0 0 0 0 0 0 0 0

OCRACH
OCR4CL

OCR5AH
OCR5AL

OCR5BH
OCR5BL

OCR5CH
OCR5CL

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNTn). A match can be used to generate an Output Compare

interrupt, or to generate a waveform output on the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low
bytes are written simultaneously when the CPU writes to these registers, the access is
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register
is shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on page 139.
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ICR1H and ICR1L — Input
Capture Register 1

ICR3H and ICR3L — Input
Capture Register 3 -

ICR4H and ICR4L - Input
Capture Register 4

ICR5H and ICR5L - Input
Capture Register 5

Bit

(0x87)
(0x86)
Read/Write
Initial Value

Bit

(0x97)
(0x96)
Read/Write
Initial Value

Bit

(0xA7)
(0xAB)
Read/Write
Initial Value

Bit

(0x127)
(0x126)
Read/Write
Initial Value

ATMEL

7 6 5 4 3 2 1 0
ICR1[15:8] ICR1H
ICR1[7:0] ICRIL
RW RIW RIW RIW RIW RW RW RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
ICR3[15:8] ICR3H
ICR3[7:0] ICR3L
R/W R/W RW RW R/W R/W R/W RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
ICR4[15:8] ICR4H
ICR4[7:0] ICRAL
R/W R/W RW RW R/W R/W R/W RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
ICR5[15:8] ICR5H
ICR5[7:0] ICR5L
R/W R/W RW RW R/W R/W RW RW
0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNTn) value each time an event occurs
on the ICPn pin (or optionally on the Analog Comparator output for Timer/Counter1).
The Input Capture can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes
are read simultaneously when the CPU accesses these registers, the access is per-
formed using an 8-bit temporary High Byte Register (TEMP). This temporary register is
shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on page 139.
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TIMSK1 - Timer/Counter 1
Interrupt Mask Register

TIMSKS3 - Timer/Counter 3
Interrupt Mask Register

TIMSK4 - Timer/Counter 4
Interrupt Mask Register

TIMSK5 - Timer/Counter 5
Interrupt Mask Register

2549K-AVR-01/07

Bit 7 6 5 4 3 2 1 0
(Ox6F) I = = ICIE1 = OCIE1C | OCIE1B | OCIE1A TOIE1 I TIMSK1
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
(0x71) I - - ICIE3 - OCIE3C | OCIE3B | OCIE3A TOIE3 I TIMSK3
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
(0x72) I - - ICIE4 - OCIE4AC | OCIE4B | OCIE4A TOIE4 I TIMSK4
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
(0x73) I - - ICIES - OCIE5C | OCIE5B | OCIE5A TOIES I TIMSK5
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 5 — ICIEn: Timer/Countern, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Input Capture interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 69.) is executed when the
ICFn Flag, located in TIFRn, is set.

¢ Bit 3 — OCIEnC: Timer/Countern, Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Output Compare C Match interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 69.) is executed when the
OCFnC Flag, located in TIFRn, is set.

¢ Bit 2 — OCIEnB: Timer/Countern, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Output Compare B Match interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 69.) is executed when the
OCFnB Flag, located in TIFRn, is set.

e Bit 1 — OCIEnA: Timer/Countern, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Output Compare A Match interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 69.) is executed when the
OCFnA Flag, located in TIFRn, is set.

¢ Bit 0 — TOIEn: Timer/Countern, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Overflow interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 69.) is executed when the TOVn Flag, located
in TIFRN, is set.
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TIFR1 - Timer/Counter1
Interrupt Flag Register

TIFR3 — Timer/Counter3
Interrupt Flag Register

TIFR4 — Timer/Counter4
Interrupt Flag Register

TIFR5 — Timer/Counter5
Interrupt Flag Register

ATMEL

Bit 7 6 5 4 3 2 1 0
ox16(0x36) | - - ICF1 - OCF1C | OCF1B | OCF1A | TOVi ]| TIFR1
Read/Write R R R/W R RW RIW RW R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
oxig (0x38) [ - - ICF3 - OCF3C | OCF3B | OCF3A | TOv3 | TIFR3
Read/Write R R RW R R/W R/W R/W RW
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
ox19(0x39) [ - - ICF4 - OCFAC | OCF4B | OCF4A | TOvV4 | TIFR4
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
ox1A(0x3A) | - - ICF5 - OCF5C | OCF5B | OCF5A | TOv5 | TIFRS
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 5 — ICFn: Timer/Countern, Input Capture Flag

This flag is set when a capture event occurs on the ICPn pin. When the Input Capture
Register (ICRn) is set by the WGMn3:0 to be used as the TOP value, the ICFn Flag is
set when the counter reaches the TOP value.

ICFn is automatically cleared when the Input Capture Interrupt Vector is executed. Alter-
natively, ICFn can be cleared by writing a logic one to its bit location.
¢ Bit 3— OCFnC: Timer/Countern, Output Compare C Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Out-
put Compare Register C (OCRnC).

Note that a Forced Output Compare (FOCnC) strobe will not set the OCFnC Flag.
OCFnC is automatically cleared when the Output Compare Match C Interrupt Vector is
executed. Alternatively, OCFnC can be cleared by writing a logic one to its bit location.
¢ Bit 2 - OCFnB: Timer/Counteri, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Out-
put Compare Register B (OCRnB).

Note that a Forced Output Compare (FOCnB) strobe will not set the OCFnB Flag.
OCFnB is automatically cleared when the Output Compare Match B Interrupt Vector is
executed. Alternatively, OCFnB can be cleared by writing a logic one to its bit location.
e Bit 1 — OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn value matches the Out-
put Compare Register A (OCRnA).

Note that a Forced Output Compare (FOCnA) strobe will not set the OCFnA Flag.
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OCFnA is automatically cleared when the Output Compare Match A Interrupt Vector is
executed. Alternatively, OCFnA can be cleared by writing a logic one to its bit location.

¢ Bit 0 — TOVn: Timer/Countern, Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC
modes, the TOVn Flag is set when the timer overflows. Refer to Table 82 on page 149
for the TOVn Flag behavior when using another WGMn3:0 bit setting.

TOVn is automatically cleared when the Timer/Countern Overflow Interrupt Vector is
executed. Alternatively, TOVn can be cleared by writing a logic one to its bit location.

A mEl% 171

2549K-AVR-01/07



ATMEL

Timer/Counter 0, 1, 3, 4, and 5 Prescaler

Internal Clock Source

Prescaler Reset

External Clock Source

Timer/Counter 0, 1, 3, 4, and 5 share the same prescaler module, but the
Timer/Counters can have different prescaler settings. The description below applies to
all Timer/Counters. Tn is used as a general name, n=0, 1, 3, 4, or 5.

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 =
1). This provides the fastest operation, with a maximum Timer/Counter clock frequency
equal to system clock frequency (fc « 10)- Alternatively, one of four taps from the pres-
caler can be used as a clock source. The prescaled clock has a frequency of either
feLk 1o/8, fork 10/64, fork 10/256, or foik 1io/1024.

The prescaler is free running, i.e., operates independently of the Clock Select logic of
the Timer/Counter, and it is shared by the Timer/Counter Tn. Since the prescaler is not
affected by the Timer/Counter’s clock select, the state of the prescaler will have implica-
tions for situations where a prescaled clock is used. One example of prescaling artifacts
occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The
number of system clock cycles from when the timer is enabled to the first count occurs
can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64,
256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program
execution. However, care must be taken if the other Timer/Counter that shares the
same prescaler also uses prescaling. A prescaler reset will affect the prescaler period
for all Timer/Counters it is connected to.

An external clock source applied to the Tn pin can be used as Timer/Counter clock
(clkrn)- The Tn pin is sampled once every system clock cycle by the pin synchronization
logic. The synchronized (sampled) signal is then passed through the edge detector. Fig-
ure 61 shows a functional equivalent block diagram of the Tn synchronization and edge
detector logic. The registers are clocked at the positive edge of the internal system clock
(clk,0)- The latch is transparent in the high period of the internal system clock.

The edge detector generates one clky,, pulse for each positive (CSn2:0 = 7) or negative
(CSn2:0 = 6) edge it detects.

Figure 61. Tn/TO Pin Sampling

N .
Tn D Q D Q D Q | (T':;é}g"cf(
Select Logic)
— |
clk

e}
Synchronization Edge Detector

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system
clock cycles from an edge has been applied to the Tn pin to the counter is updated.

Enabling and disabling of the clock input must be done when Tn has been stable for at
least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse
is generated.

Each half period of the external clock applied must be longer than one system clock
cycle to ensure correct sampling. The external clock must be guaranteed to have less
than half the system clock frequency (fecik < ok 110/2) given a 50/50% duty cycle. Since
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Register Description

GTCCR - General
Timer/Counter Control
Register
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the edge detector uses sampling, the maximum frequency of an external clock it can
detect is half the sampling frequency (Nyquist sampling theorem). However, due to vari-
ation of the system clock frequency and duty cycle caused by Oscillator source (crystal,
resonator, and capacitors) tolerances, it is recommended that maximum frequency of an
external clock source is less than f, ,0/2.5.

An external clock source can not be prescaled.

Figure 62. Prescaler for synchronous Timer/Counters

ClkI/O 10-BIT T/C PRESCALER
Clear
o 2 S e
© fa) 2
PSR10 o
Tn TR °
1 Synchronization ‘—\

(]
L]
L]
Tn PTTTTTTTTTTTTTT L @
: 0

l«— o
<
<
<
<
<
<

Y V N

CSno ;\ CSno
CSn1 » CSn1
CSn2 \ l CSn2 l
TIMER/COUNTERN CLOCK SOURCE oo TIMER/COUNTERN CLOCK SOURCE
clk;, clk;,
Bit 7 6 5 4 3 2 1 0
0x23 (0x43) | TSM - - - - PSRASY |[PSRSYNC] GTCCR
Read/Write R/W R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this
mode, the value that is written to the PSRASY and PSRSYNC bits is kept, hence keep-
ing the corresponding prescaler reset signals asserted. This ensures that the
corresponding Timer/Counters are halted and can be configured to the same value with-
out the risk of one of them advancing during configuration. When the TSM bit is written
to zero, the PSRASY and PSRSYNC bits are cleared by hardware, and the
Timer/Counters start counting simultaneously.

e Bit 0 — PSRSYNC: Prescaler Reset for Synchronous Timer/Counters

When this bit is one, Timer/Counter0, Timer/Counter1, Timer/Counter3, Timer/Counter4
and Timer/Counter5 prescaler will be Reset. This bit is normally cleared immediately by
hardware, except if the TSM bit is set. Note that Timer/CounterO, Timer/Counteri,
Timer/Counter3, Timer/Counter4 and Timer/Counter5 share the same prescaler and a
reset of this prescaler will affect all timers.
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The Output Compare Modulator (OCM) allows generation of waveforms modulated with
a carrier frequency. The modulator uses the outputs from the Output Compare Unit C of
the 16-bit Timer/Counter1 and the Output Compare Unit of the 8-bit Timer/Counter0. For
more details about these Timer/Counters see “Timer/Counter 0, 1, 3, 4, and 5 Prescaler”
on page 172 and “8-bit Timer/Counter2 with PWM and Asynchronous Operation” on

page 176.

Figure 63. Output Compare Modulator, Block Diagram

Timer/Counter 1 oc1c
Pin
oc1C/
Timer/Counter 0 ——0cCo0 OCOA / PB7

When the modulator is enabled, the two output compare channels are modulated
together as shown in the block diagram (Figure 63).

The Output Compare unit 1C and Output Compare unit 2 shares the PB7 port pin for
output. The outputs of the Output Compare units (OC1C and OCOA) overrides the nor-
mal PORTB7 Register when one of them is enabled (i.e., when COMnx1:0 is not equal
to zero). When both OC1C and OCOA are enabled at the same time, the modulator is
automatically enabled.

The functional equivalent schematic of the modulator is shown on Figure 64. The sche-
matic includes part of the Timer/Counter units and the port B pin 7 output driver circuit.

Figure 64. Output Compare Modulator, Schematic
COMAO01
COMAO00 %
T ma D N [P

( From Waveform Generator) — D Q

o]

ocic/
OCO0A/ PB7

( From Waveform Generator) —» D Q

JU O

OCOA

T a

PORTBY? DDRB7
DATAB“§
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When the modulator is enabled the type of modulation (logical AND or OR) can be
selected by the PORTB7 Register. Note that the DDRB7 controls the direction of the
port independent of the COMnx1:0 bit setting.

Figure 65 illustrates the modulator in action. In this example the Timer/Counter1 is set to
operate in fast PWM mode (non-inverted) and Timer/CounterO uses CTC waveform
mode with toggle Compare Output mode (COMnx1:0 = 1).

Figure 65. Output Compare Modulator, Timing Diagram

i

OocCi1C
(FPWM Mode)

[l
e || UTUULTUUIUUIUUUUUIIUUUUIUU DU RUL
osrer o ||| LT JII[] 1]

(Period) D E— 2 E

In this example, Timer/Counter2 provides the carrier, while the modulating signal is gen-
erated by the Output Compare unit C of the Timer/Counter1.

The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction
factor is equal to the number of system clock cycles of one period of the carrier (OCOA).
In this example the resolution is reduced by a factor of two. The reason for the reduction
is illustrated in Figure 65 at the second and third period of the PB7 output when
PORTB?7 equals zero. The period 2 high time is one cycle longer than the period 3 high
time, but the result on the PB7 output is equal in both periods.
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8-bit Timer/Counter2 with PWM and Asynchronous Operation

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The
main features are:

Single Channel Counter

Clear Timer on Compare Match (Auto Reload)

Glitch-free, Phase Correct Pulse Width Modulator (PWM)

Frequency Generator

10-bit Clock Prescaler

Overflow and Compare Match Interrupt Sources (TOV2, OCF2A and OCF2B)

Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 59.. For the

176

actual placement of I/O pins, see “Pin Configurations” on page 2. CPU accessible I/O
Registers, including 1/O bits and I/O pins, are shown in bold. The device-specific 1/0
Register and bit locations are listed in the “Register Description” on page 191.

The Power Reduction Timer/Counter2 bit, PRTIM2, in “PRRO — Power Reduction Regis-
ter 0” on page 55 must be written to zero to enable Timer/Counter2 module.

Figure 66. 8-bit Timer/Counter Block Diagram

Count - TOVn
Clear (Int.Req.)
Control Logic
Direction clky, - TOSC1
Y l Oscillator
Prescaler » TOSC2
TOP | BOTTOM
[e— clk
Y vy
A Timer/Counter 3
<3 TCNTn
| S = =0
* J'} * ocnA
" (Int.Req.)
\/ [}
— [} Waveform
= [] ™ Generation | OCnA
Fixed ocnB
Top (Int.Req.)
. B Value Req.
2 Waveform
o = > s » 0CnB
eneration
<
8
OCRnB .
Synchronized Status i e ¢k
ynonronized latus 7ags D> Synchronization Unit o
[e—— clk,q,
A
Y asynchronous mode “
Status flags select (ASn)
ASSRn
[ TCCRnA | TCCRnB |
v v
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\j
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The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are
8-bit registers. Interrupt request (abbreviated to Int.Req.) signals are all visible in the
Timer Interrupt Flag Register (TIFR2). All interrupts are individually masked with the
Timer Interrupt Mask Register (TIMSK2). TIFR2 and TIMSK2 are not shown in the
figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously
clocked from the TOSC1/2 pins, as detailed later in this section. The asynchronous
operation is controlled by the Asynchronous Status Register (ASSR). The Clock Select
logic block controls which clock source the Timer/Counter uses to increment (or decre-
ment) its value. The Timer/Counter is inactive when no clock source is selected. The
output from the Clock Select logic is referred to as the timer clock (clky,).

The double buffered Output Compare Register (OCR2A and OCR2B) are compared
with the Timer/Counter value at all times. The result of the compare can be used by the
Waveform Generator to generate a PWM or variable frequency output on the Output
Compare pins (OC2A and OC2B). See “Output Compare Unit” on page 184. for details.
The compare match event will also set the Compare Flag (OCF2A or OCF2B) which can
be used to generate an Output Compare interrupt request.

Many register and bit references in this document are written in general form. A lower
case “n” replaces the Timer/Counter number, in this case 2. However, when using the
register or bit defines in a program, the precise form must be used, i.e., TCNT2 for
accessing Timer/Counter2 counter value and so on.

The definitions in Table 87 are also used extensively throughout the section.
Table 87. Definitions
BOTTOM | The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value OxFF (MAX) or the value stored in the OCR2A Register. The
assignment is dependent on the mode of operation.

The Timer/Counter can be clocked by an internal synchronous or an external asynchro-
nous clock source. The clock source clkr, is by default equal to the MCU clock, clk,q.
When the AS2 bit in the ASSR Register is written to logic one, the clock source is taken
from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For details on
asynchronous operation, see “Asynchronous Operation of Timer/Counter2” on page
188. For details on clock sources and prescaler, see “Timer/Counter Prescaler’ on page
190.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit.
Figure 67 shows a block diagram of the counter and its surrounding environment.
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Figure 67. Counter Unit Block Diagram

TOVn

—»
(Int.Req.)
DATA BUS > a

t |4——| TOSC1

count

T/IC
Oscillator

-
clear . clk
TCNTn d Control Logic [ Prescaler
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bottom T Tlop

Signal description (internal signals):

—» TOSC2

CIkl/O

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).
clk, Timer/Counter clock, referred to as clky, in the following.
top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or dec-
remented at each timer clock (clky,). clky, can be generated from an external or internal
clock source, selected by the Clock Select bits (CS22:0). When no clock source is
selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be accessed
by the CPU, regardless of whether clk, is present or not. A CPU write overrides (has
priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits
located in the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the
Timer/Counter Control Register B (TCCR2B). There are close connections between
how the counter behaves (counts) and how waveforms are generated on the Output
Compare outputs OC2A and OC2B. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 179.

The Timer/Counter Overflow Flag (TOV?2) is set according to the mode of operation
selected by the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt.
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Modes of Operation The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGM22:0) and
Compare Output mode (COM2x1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM2x1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM2x1:0 bits control whether the out-
put should be set, cleared, or toggled at a compare match (See “Compare Match Output
Unit” on page 185.).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 186.

Normal Mode The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag
(TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The
TOV2 Flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV2
Flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.

Clear Timer on Compare In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used

Match (CTC) Mode to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top value for
the counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Table 68. The counter value (TCNT2)
increases until a compare match occurs between TCNT2 and OCR2A, and then counter
(TCNT2) is cleared.

Figure 68. CTC Mode, Timing Diagram

o V1 Vi

OCnx —
(Toggle) ———1 1 L

OCnx Interrupt Flag Set

-

(COMnx1:0 = 1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by
using the OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be
used for updating the TOP value. However, changing TOP to a value close to BOTTOM
when the counter is running with none or a low prescaler value must be done with care
since the CTC mode does not have the double buffering feature. If the new value written
to OCR2A is lower than the current value of TCNT2, the counter will miss the compare
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match. The counter will then have to count to its maximum value (OxFF) and wrap
around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle
its logical level on each compare match by setting the Compare Output mode bits to tog-
gle mode (COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the
data direction for the pin is set to output. The waveform generated will have a maximum
frequency of focop = T 110/2 Wwhen OCR2A is set to zero (0x00). The waveform fre-
quency is defined by the following equation:

(o foi_1o
OCnx ™ 2N (1 + OCRnXx)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle
that the counter counts from MAX to 0x00.

The fast Pulse Width Modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high
frequency PWM waveform generation option. The fast PWM differs from the other PWM
option by its single-slope operation. The counter counts from BOTTOM to TOP then
restarts from BOTTOM. TOP is defined as OxFF when WGM22:0 = 3, and OCR2A when
MGM22:0 = 7. In non-inverting Compare Output mode, the Output Compare (OC2x) is
cleared on the compare match between TCNT2 and OCR2x, and set at BOTTOM. In
inverting Compare Output mode, the output is set on compare match and cleared at
BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM
mode can be twice as high as the phase correct PWM mode that uses dual-slope oper-
ation. This high frequency makes the fast PWM mode well suited for power regulation,
rectification, and DAC applications. High frequency allows physically small sized exter-
nal components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP
value. The counter is then cleared at the following timer clock cycle. The timing diagram
for the fast PWM mode is shown in Figure 60. The TCNT2 value is in the timing diagram
shown as a histogram for illustrating the single-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2
slopes represent compare matches between OCR2x and TCNT2.

Figure 69. Fast PWM Mode, Timing Diagram
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The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If
the interrupt is enabled, the interrupt handler routine can be used for updating the com-
pare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the
OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM2x1:0 to three. TOP is
defined as OxFF when WGM2:0 = 3, and OCR2A when WGM2:0 = 7 (See Table 89 on
page 191). The actual OC2x value will only be visible on the port pin if the data direction
for the port pin is set as output. The PWM waveform is generated by setting (or clearing)
the OC2x Register at the compare match between OCR2x and TCNT2, and clearing (or
setting) the OC2x Register at the timer clock cycle the counter is cleared (changes from
TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

fo 1o

fOCnxPWM " N-256

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a
PWM waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM,
the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A
equal to MAX will result in a constantly high or low output (depending on the polarity of
the output set by the COM2A1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The
waveform generated will have a maximum frequency of f,., = f ;,0/2 when OCR2A is
set to zero. This feature is similar to the OC2A toggle in CTC mode, except the double
buffer feature of the Output Compare unit is enabled in the fast PWM mode.
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The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase
correct PWM waveform generation option. The phase correct PWM mode is based on a
dual-slope operation. The counter counts repeatedly from BOTTOM to TOP and then
from TOP to BOTTOM. TOP is defined as OxFF when WGM22:0 = 1, and OCR2A when
MGM22:0 = 5. In non-inverting Compare Output mode, the Output Compare (OC2x) is
cleared on the compare match between TCNT2 and OCR2x while upcounting, and set
on the compare match while downcounting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency
than single slope operation. However, due to the symmetric feature of the dual-slope
PWM modes, these modes are preferred for motor control applications.

In phase correct PWM mode the counter is incremented until the counter value matches
TOP. When the counter reaches TOP, it changes the count direction. The TCNT2 value
will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct
PWM mode is shown on Figure 70. The TCNT2 value is in the timing diagram shown as
a histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes repre-
sent compare matches between OCR2x and TCNT2.

Figure 70. Phase Correct PWM Mode, Timing Diagram
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The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOT-
TOM. The Interrupt Flag can be used to generate an interrupt each time the counter
reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on
the OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM. An
inverted PWM output can be generated by setting the COM2x1:0 to three. TOP is
defined as OxFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (See Table 90 on
page 192). The actual OC2x value will only be visible on the port pin if the data direction
for the port pin is set as output. The PWM waveform is generated by clearing (or setting)
the OC2x Register at the compare match between OCR2x and TCNT2 when the
counter increments, and setting (or clearing) the OC2x Register at compare match
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between OCR2x and TCNT2 when the counter decrements. The PWM frequency for the
output when using phase correct PWM can be calculated by the following equation:

¢ _ fex o
OCnxPCPWM N-510

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR2A is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.

At the very start of period 2 in Figure 70 OCnx has a transition from high to low even
though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.

e OCR2A changes its value from MAX, like in Figure 70. When the OCR2A value is
MAX the OCn pin value is the same as the result of a down-counting compare
match. To ensure symmetry around BOTTOM the OCn value at MAX must
correspond to the result of an up-counting Compare Match.

e The timer starts counting from a value higher than the one in OCR2A, and for that
reason misses the Compare Match and hence the OCn change that would have
happened on the way up.
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The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator
signals a match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the
next timer clock cycle. If the corresponding interrupt is enabled, the Output Compare
Flag generates an Output Compare interrupt. The Output Compare Flag is automatically
cleared when the interrupt is executed. Alternatively, the Output Compare Flag can be
cleared by software by writing a logical one to its I/O bit location. The Waveform Gener-
ator uses the match signal to generate an output according to operating mode set by the
WGM22:0 bits and Compare Output mode (COM2x1:0) bits. The max and bottom sig-
nals are used by the Waveform Generator for handling the special cases of the extreme
values in some modes of operation (“Modes of Operation” on page 179).

Figure 57 on page 157 shows a block diagram of the Output Compare unit.

Figure 71. Output Compare Unit, Block Diagram
DATA BUS

OCRnNXx TCNTn

J L <L

| = (8-bit Comparator ) I

OCFnx (Int.Req.)

P

bottom ] Waveform Generator OCnx

P

WGMn1:0 COMnX1:0

FOCn >

The OCR2x Register is double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation,
the double buffering is disabled. The double buffering synchronizes the update of the
OCR2x Compare Register to either top or bottom of the counting sequence. The syn-
chronization prevents the occurrence of odd-length, non-symmetrical PWM pulses,
thereby making the output glitch-free.

The OCR2x Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCR2x Buffer Register, and if double
buffering is disabled the CPU will access the OCR2x directly.

In non-PWM waveform generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOC2x) bit. Forcing compare
match will not set the OCF2x Flag or reload/clear the timer, but the OC2x pin will be
updated as if a real compare match had occurred (the COM2x1:0 bits settings define
whether the OC2x pin is set, cleared or toggled).

All CPU write operations to the TCNT2 Register will block any compare match that
occurs in the next timer clock cycle, even when the timer is stopped. This feature allows
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OCR2x to be initialized to the same value as TCNT2 without triggering an interrupt when
the Timer/Counter clock is enabled.

Since writing TCNT2 in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNT2 when using the Output
Compare channel, independently of whether the Timer/Counter is running or not. If the
value written to TCNT2 equals the OCR2x value, the compare match will be missed,
resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value
equal to BOTTOM when the counter is downcounting.

The setup of the OC2x should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OC2x value is to use the Force
Output Compare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its
value even when changing between Waveform Generation modes.

Be aware that the COM2x1:0 bits are not double buffered together with the compare
value. Changing the COM2x1:0 bits will take effect immediately.

The Compare Output mode (COM2x1:0) bits have two functions. The Waveform Gener-
ator uses the COM2x1:0 bits for defining the Output Compare (OC2x) state at the next
compare match. Also, the COM2x1:0 bits control the OC2x pin output source. Figure 72
shows a simplified schematic of the logic affected by the COM2x1:0 bit setting. The I/O
Registers, 1/0 bits, and 1/O pins in the figure are shown in bold. Only the parts of the
general I/0 Port Control Registers (DDR and PORT) that are affected by the COM2x1:0
bits are shown. When referring to the OC2x state, the reference is for the internal OC2x
Register, not the OC2x pin.

Figure 72. Compare Match Output Unit, Schematic
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The general I/O port function is overridden by the Output Compare (OC2x) from the
Waveform Generator if either of the COM2x1:0 bits are set. However, the OC2x pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
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port pin. The Data Direction Register bit for the OC2x pin (DDR_OC2x) must be set as
output before the OC2x value is visible on the pin. The port override function is indepen-
dent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2x state before
the output is enabled. Note that some COM2x1:0 bit settings are reserved for certain
modes of operation. See “Register Description” on page 191.

The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM2x1:0 = 0 tells the Waveform Generator that no
action on the OC2x Register is to be performed on the next compare match. For com-
pare output actions in the non-PWM modes refer to Table 91 on page 192. For fast
PWM mode, refer to Table 92 on page 192, and for phase correct PWM refer to Table
93 on page 193.

A change of the COM2x1:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOC2x strobe bits.

The following figures show the Timer/Counter in synchronous mode, and the timer clock
(clky,) is therefore shown as a clock enable signal. In asynchronous mode, clk;,o should
be replaced by the Timer/Counter Oscillator clock. The figures include information on
when Interrupt Flags are set. Figure 73 contains timing data for basic Timer/Counter
operation. The figure shows the count sequence close to the MAX value in all modes
other than phase correct PWM mode.

Figure 73. Timer/Counter Timing Diagram, no Prescaling
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Figure 74 shows the same timing data, but with the prescaler enabled.
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Figure 74. Timer/Counter Timing Diagram, with Prescaler (f ,0/8)
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Figure 75 shows the setting of OCF2A in all modes except CTC mode.

Figure 75. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (f ,,0/8)
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Figure 76 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 76. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with
Prescaler (fyx 1,0/8)
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Asynchronous Operation of Timer/Counter2

188

When Timer/Counter2 operates asynchronously, some considerations must be taken.

Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be
corrupted. A safe procedure for switching clock source is:

1. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.
2. Select clock source by setting AS2 as appropriate.

3. Write new values to TCNT2, OCR2x, and TCCR2x.
4

To switch to asynchronous operation: Wait for TCN2UB, OCR2xUB, and
TCR2xUB.

5. Clear the Timer/Counter2 Interrupt Flags.
6. Enable interrupts, if needed.

The CPU main clock frequency must be more than four times the Oscillator
frequency.

When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is
transferred to a temporary register, and latched after two positive edges on TOSCH1.
The user should not write a new value before the contents of the temporary register
have been transferred to its destination. Each of the five mentioned registers have
their individual temporary register, which means that e.g. writing to TCNT2 does not
disturb an OCR2x write in progress. To detect that a transfer to the destination
register has taken place, the Asynchronous Status Register — ASSR has been
implemented.

When entering Power-save or ADC Noise Reduction mode after having written to
TCNT2, OCR2x, or TCCR2x, the user must wait until the written register has been
updated if Timer/Counter2 is used to wake up the device. Otherwise, the MCU will
enter sleep mode before the changes are effective. This is particularly important if
any of the Output Compare2 interrupt is used to wake up the device, since the
Output Compare function is disabled during writing to OCR2x or TCNT2. If the write
cycle is not finished, and the MCU enters sleep mode before the corresponding
OCR2xUB bit returns to zero, the device will never receive a compare match
interrupt, and the MCU will not wake up.

If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise
Reduction mode, precautions must be taken if the user wants to re-enter one of
these modes: The interrupt logic needs one TOSC1 cycle to be reset. If the time
between wake-up and re-entering sleep mode is less than one TOSC1 cycle, the
interrupt will not occur, and the device will fail to wake up. If the user is in doubt
whether the time before re-entering Power-save or ADC Noise Reduction mode is
sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has
elapsed:

1. Write a value to TCCR2x, TCNT2, or OCR2x.
2. Wait until the corresponding Update Busy Flag in ASSR returns to zero.
3. Enter Power-save or ADC Noise Reduction mode.

When the asynchronous operation is selected, the 32.768 kHz Oscillator for
Timer/Counter2 is always running, except in Power-down and Standby modes. After
a Power-up Reset or wake-up from Power-down or Standby mode, the user should
be aware of the fact that this Oscillator might take as long as one second to stabilize.
The user is advised to wait for at least one second before using Timer/Counter2
after power-up or wake-up from Power-down or Standby mode. The contents of all
Timer/Counter2 Registers must be considered lost after a wake-up from Power-
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down or Standby mode due to unstable clock signal upon start-up, no matter
whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

Description of wake up from Power-save or ADC Noise Reduction mode when the
timer is clocked asynchronously: When the interrupt condition is met, the wake up
process is started on the following cycle of the timer clock, that is, the timer is
always advanced by at least one before the processor can read the counter value.
After wake-up, the MCU is halted for four cycles, it executes the interrupt routine,
and resumes execution from the instruction following SLEEP.

Reading of the TCNT2 Register shortly after wake-up from Power-save may give an
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading
TCNT2 must be done through a register synchronized to the internal I/O clock
domain. Synchronization takes place for every rising TOSC1 edge. When waking up
from Power-save mode, and the 1/O clock (clk,p) again becomes active, TCNT2 will
read as the previous value (before entering sleep) until the next rising TOSC1 edge.
The phase of the TOSC clock after waking up from Power-save mode is essentially
unpredictable, as it depends on the wake-up time. The recommended procedure for
reading TCNT2 is thus as follows:

1. Write any value to either of the registers OCR2x or TCCR2x.
2. Wait for the corresponding Update Busy Flag to be cleared.
3. Read TCNT2.

During asynchronous operation, the synchronization of the Interrupt Flags for the
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is
therefore advanced by at least one before the processor can read the timer value
causing the setting of the Interrupt Flag. The Output Compare pin is changed on the
timer clock and is not synchronized to the processor clock.
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Figure 77. Prescaler for Timer/Counter2
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The clock source for Timer/Counter2 is named clkyog. Clkyog is by default connected to
the main system I/O clock clk,,. By setting the AS2 bit in ASSR, Timer/Counter2 is asyn-
chronously clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real
Time Counter (RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from
Port C. A crystal can then be connected between the TOSC1 and TOSC2 pins to serve
as an independent clock source for Timer/Counter2. The Oscillator is optimized for use
with a 32.768 kHz crystal. By setting the EXCLK bit in the ASSR, a 32 KHz external
clock can be applied. See “ASSR — Asynchronous Status Register” on page 196 for
details.

For Timer/Counter2, the possible prescaled selections are: Clk,g/8, Clko5/32, Clk1o/64,
clk1o5/128, clk1,5/256, and clky,g/1024. Additionally, clky,g as well as 0 (stop) may be
selected. Setting the PSRASY bit in GTCCR resets the prescaler. This allows the user
to operate with a predictable prescaler.
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Bit 7 6 5 4 3 2 1 0
(0xB0) I COM2A1 | COM2A0 | COM2B1 | COM2BO - - WGM21 | WGM20 I TCCR2A
Read/Write R/W R/W R/W R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7:6 —- COM2A1:0: Compare Match Output A Mode

These bits control the Output Compare pin (OC2A) behavior. If one or both of the
COMZ2A1:0 bits are set, the OC2A output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit cor-
responding to the OC2A pin must be set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the
WGM22:0 bit setting. Table 88 shows the COM2A1:0 bit functionality when the
WGM22:0 bits are set to a normal or CTC mode (non-PWM).

Table 88. Compare Output Mode, non-PWM Mode

COM2A1 COM2A0 | Description
0 0 Normal port operation, OC2A disconnected.
0 1 Toggle OC2A on Compare Match
1 0 Clear OC2A on Compare Match
1 1 Set OC2A on Compare Match

Table 89 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast

PWM mode.

Table 89. Compare Output Mode, Fast PWM Mode(")

COM2A1 COM2A0 | Description
0 0 Normal port operation, OC2A disconnected.
0 1 WGM22 = 0: Normal Port Operation, OC2A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.
1 0 Clear OC2A on Compare Match, set OC2A at BOTTOM,

(non-inverting mode).

Set OC2A on Compare Match, clear OC2A at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case,
the Compare Match is ignored, but the set or clear is done at BOTTOM. See “Fast
PWM Mode” on page 180 for more details.

Table 90 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to
phase correct PWM mode.
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Table 90. Compare Output Mode, Phase Correct PWM Mode!"
COM2A1 COM2A0 | Description

0 0 Normal port operation, OC2A disconnected.

0 1 WGM22 = 0: Normal Port Operation, OC2A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0 Clear OC2A on Compare Match when up-counting. Set OC2A on
Compare Match when down-counting.

1 1 Set OC2A on Compare Match when up-counting. Clear OC2A on
Compare Match when down-counting.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case,
the Compare Match is ignored, but the set or clear is done at TOP. See “Phase Cor-
rect PWM Mode” on page 182 for more details.

e Bits 5:4 - COM2B1:0: Compare Match Output B Mode

These bits control the Output Compare pin (OC2B) behavior. If one or both of the
COM2B1:0 bits are set, the OC2B output overrides the normal port functionality of the
I/0 pin it is connected to. However, note that the Data Direction Register (DDR) bit cor-
responding to the OC2B pin must be set in order to enable the output driver.

When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the
WGM22:0 bit setting. Table 91 shows the COM2B1:0 bit functionality when the
WGM22:0 bits are set to a normal or CTC mode (non-PWM).

Table 91. Compare Output Mode, non-PWM Mode

COM2B1 COM2B0 | Description
0 0 Normal port operation, OC2B disconnected.
0 1 Toggle OC2B on Compare Match
1 0 Clear OC2B on Compare Match
1 1 Set OC2B on Compare Matich

Table 92 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast
PWM mode.

Table 92. Compare Output Mode, Fast PWM Mode("

COM2B1 COM2B0 | Description
0 0 Normal port operation, OC2B disconnected.
0 1 Reserved
1 0 Clear OC2B on Compare Match, set OC2B at BOTTOM,
(non-inverting mode).
1 1 Set OC2B on Compare Match, clear OC2B at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case,
the Compare Match is ignored, but the set or clear is done at BOTTOM. See “Fast
PWM Mode” on page 180 for more details.
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Table 93 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to
phase correct PWM mode.

Table 93. Compare Output Mode, Phase Correct PWM Mode!"
COM2B1 COM2B0 | Description

0 0 Normal port operation, OC2B disconnected.
0 1 Reserved
1 0 Clear OC2B on Compare Match when up-counting. Set OC2B on

Compare Match when down-counting.

1 1 Set OC2B on Compare Match when up-counting. Clear OC2B on
Compare Match when down-counting.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case,
the Compare Match is ignored, but the set or clear is done at TOP. See “Phase Cor-
rect PWM Mode” on page 182 for more details.

e Bits 3, 2 — Res: Reserved Bits

These bits are reserved bits and will always read as zero.

¢ Bits 1:0 - WGM21:0: Waveform Generation Mode

Combined with the WGM22 bit found in the TCCR2B Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used, see Table 94. Modes of operation sup-
ported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare
Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes (see
“Modes of Operation” on page 179).

Table 94. Waveform Generation Mode Bit Description

Timer/Counter
Mode of Update of | TOV Fla
Mode | WGM2 | WGM1 | WGMO | Operation TOP | OCRxat | Seton®

0 0 0 0 Normal OxFF | Immediate MAX

1 0 0 1 PWM, Phase OxFF TOP BOTTOM
Correct

2 0 1 0 CTC OCRA | Immediate MAX

3 0 1 1 Fast PWM OxFF BOTTOM MAX

4 1 0 0 Reserved - - -

5 1 0 1 PWM, Phase OCRA TOP BOTTOM
Correct

6 1 1 0 Reserved - - -

7 1 1 1 Fast PWM OCRA | BOTTOM TOP

Notes: 1. MAX= OxFF
2. BOTTOM= 0x00
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Bit 7 6 5 4 3 2 1 0
(0xB1) I FOC2A FOC2B - - WGM22 Cs22 Ccs21 CSs20 I TCCR2B
Read/Write W i R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOC2A: Force Output Compare A
The FOC2A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR2B is written when operating in PWM mode. When writing a logical one to the
FOC2A bit, an immediate Compare Match is forced on the Waveform Generation unit.
The OC2A output is changed according to its COM2A1:0 bits setting. Note that the
FOCZ2A bit is implemented as a strobe. Therefore it is the value present in the
COM2A1:0 bits that determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode
using OCR2A as TOP.

The FOC2A bit is always read as zero.

¢ Bit 6 — FOC2B: Force Output Compare B
The FOC2B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR2B is written when operating in PWM mode. When writing a logical one to the
FOC2B bit, an immediate Compare Match is forced on the Waveform Generation unit.
The OC2B output is changed according to its COM2B1:0 bits setting. Note that the
FOC2B bit is implemented as a strobe. Therefore it is the value present in the
COM2B1:0 bits that determines the effect of the forced compare.

A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode
using OCR2B as TOP.

The FOC2B bit is always read as zero.

¢ Bits 5:4 — Res: Reserved Bits

These bits are reserved bits and will always read as zero.

* Bit 3 - WGM22: Waveform Generation Mode
See the description in the “TCCR2A —Timer/Counter Control Register A” on page 191.

¢ Bit 2:0 — CS22:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see
Table 95.
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TCNT2 — Timer/Counter
Register

OCR2A - Output Compare
Register A

OCR2B - Output Compare
Register B
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Table 95. Clock Select Bit Description

CS22 Cs21 CS20 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clkyos/(No prescaling)
0 1 0 clkrog/8 (From prescaler)
0 1 1 clkro5/32 (From prescaler)
1 0 0 clkro5/64 (From prescaler)
1 0 1 clkyog/128 (From prescaler)
1 1 0 clko5/256 (From prescaler)
1 1 1 clkyo5/1024 (From prescaler)

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting.

Bit 7 6 5 4 3 2 1 0
(0xB2) | TCNT2[7:0] | Tont2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to
the Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes)
the Compare Match on the following timer clock. Modifying the counter (TCNT2) while
the counter is running, introduces a risk of missing a Compare Match between TCNT2
and the OCR2x Registers.

Bit 7 6 5 4 3 2 1 0
(0xB3) | OCR2A[7:0] | OCR2A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared
with the counter value (TCNT2). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC2A pin.

Bit 7 6 5 4 3 2 1 0
(0xB4) | OCR2B[7:0] | OCR2B
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register B contains an 8-bit value that is continuously compared
with the counter value (TCNT2). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC2B pin.
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Bit 7 6 5 4 3 2 1 0
(0xB6) | - | ExcLK | As2 | TCN2UB | OCR2AUB | OCR2BUB | TCR2AUB | TCR2BUB | ASSR
Read/Write R R/W R/W R R R R R
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 6 — EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock
input buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1)
pin instead of a 32 kHz crystal. Writing to EXCLK should be done before asynchronous
operation is selected. Note that the crystal Oscillator will only run when this bit is zero.

e Bit 5 - AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the 1/O clock, clk;,o. When
AS2 is written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to
the Timer Oscillator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of
TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B might be corrupted.

* Bit 4 - TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes
set. When TCNT2 has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that TCNT2 is ready to be
updated with a new value.

e Bit 3 — OCR2AUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes
set. When OCR2A has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that OCR2A is ready to be
updated with a new value.

¢ Bit 2 - OCR2BUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes
set. When OCR2B has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that OCR2B is ready to be
updated with a new value.

e Bit 1 - TCR2AUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit
becomes set. When TCCR2A has been updated from the temporary storage register,
this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2A is ready
to be updated with a new value.

* Bit 0 - TCR2BUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit
becomes set. When TCCR2B has been updated from the temporary storage register,
this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2B is ready
to be updated with a new value.

If a write is performed to any of the five Timer/Counter2 Registers while its update busy
flag is set, the updated value might get corrupted and cause an unintentional interrupt to
occur.
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TIMSK2 - Timer/Counter2
Interrupt Mask Register

TIFR2 - Timer/Counter2
Interrupt Flag Register
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The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are dif-
ferent. When reading TCNT2, the actual timer value is read. When reading OCR2A,
OCR2B, TCCR2A and TCCR2B the value in the temporary storage register is read.

Bit 7 6 5 4 3 2 1 0
(0x70) | - - OCIE2B | OCIE2A | TOIE2 | TIMSK2
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 2 — OCIE2B: Timer/Counter2 Output Compare Match B Interrupt Enable

When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one),
the Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt
is executed if a compare match in Timer/Counter2 occurs, i.e., when the OCF2B bit is
set in the Timer/Counter 2 Interrupt Flag Register — TIFR2.

e Bit 1 — OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one),
the Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt
is executed if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is
set in the Timer/Counter 2 Interrupt Flag Register — TIFR2.

e Bit 0 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the
Timer/Counter2 Interrupt Flag Register — TIFR2.

Bit 7 6 5 4 3 2 1 0

ox17(ox37) | - - - - - OCF2B | OCF2A | TOvV2 | TIFR2
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 2 — OCF2B: Output Compare Flag 2 B

The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2
and the data in OCR2B — Output Compare Register2. OCF2B is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF2B is
cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2B
(Timer/Counter2 Compare match Interrupt Enable), and OCF2B are set (one), the
Timer/Counter2 Compare match Interrupt is executed.

e Bit 1 — OCF2A: Output Compare Flag 2 A

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2
and the data in OCR2A — Output Compare Register2. OCF2A is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF2A is
cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2A
(Timer/Counter2 Compare match Interrupt Enable), and OCF2A are set (one), the
Timer/Counter2 Compare match Interrupt is executed.

A IIIEI% 197



GTCCR - General
Timer/Counter Control
Register

ATMEL

e Bit 0 — TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2A
(Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the
Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter2 changes counting direction at 0x00.

Bit 7 6 5 4 3 2 1 0
0x23 (0x43) | TSM = = PSRASY |PSRSYNC| GTCCR
Read/Write R/W R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 1 — PSRASY: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally
cleared immediately by hardware. If the bit is written when Timer/Counter2 is operating
in asynchronous mode, the bit will remain one until the prescaler has been reset. The bit
will not be cleared by hardware if the TSM bit is set. Refer to the description of the “Bit 7
— TSM: Timer/Counter Synchronization Mode” on page 173 for a description of the
Timer/Counter Synchronization mode.
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SPI - Serial Peripheral Interface

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer
between the ATmega640/1280/1281/2560/2561 and peripheral devices or between sev-
eral AVR devices. The ATmega640/1280/1281/2560/2561 SPI includes the following
features:

¢ Full-duplex, Three-wire Synchronous Data Transfer

Master or Slave Operation

LSB First or MSB First Data Transfer

Seven Programmable Bit Rates

End of Transmission Interrupt Flag

Write Collision Flag Protection

Wake-up from Idle Mode

Double Speed (CK/2) Master SPI Mode

USART can also be used in Master SPI mode, see “USART in SPI Mode” on page 236.

The Power Reduction SPI bit, PRSPI, in “PRRO — Power Reduction Register 0” on page
55 on page 50 must be written to zero to enable SPI module.

Figure 78. SPI Block Diagram(")
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Note: 1. Refer to Figure 1 on page 2, and Table 42 on page 92 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 79.
The system consists of two shift Registers, and a Master clock generator. The SPI Mas-
ter initiates the communication cycle when pulling low the Slave Select SS pin of the
desired Slave. Master and Slave prepare the data to be sent in their respective shift
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Registers, and the Master generates the required clock pulses on the SCK line to inter-
change data. Data is always shifted from Master to Slave on the Master Out — Slave In,
MOQOSI, line, and from Slave to Master on the Master In — Slave Out, MISO, line. After
each data packet, the Master will synchronize the Slave by pulling high the Slave Select,
SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line.
This must be handled by user software before communication can start. When this is
done, writing a byte to the SPI Data Register starts the SPI clock generator, and the
hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock gener-
ator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit
(SPIE) in the SPCR Register is set, an interrupt is requested. The Master may continue
to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high
the Slave Select, SS line. The last incoming byte will be kept in the Buffer Register for
later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated
as long as the SS pin is driven high. In this state, software may update the contents of
the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock
pulses on the SCK pin until the SS pin is driven low. As one byte has been completely
shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE,
in the SPCR Register is set, an interrupt is requested. The Slave may continue to place
new data to be sent into SPDR before reading the incoming data. The last incoming byte
will be kept in the Buffer Register for later use.

Figure 79. SPI Master-slave Interconnection
MSB MASTER LSB MISO MISO! MSB  SLAVE LSB

4'8 BIT SHIFT REGISTER 8 BIT SHIFT REGISTERW

. MOSI_MOSI. N
SHIFT
ENABLE
SPI fsoK SCK?
CLOCK GENERATOR e g —
= ss

The system is single buffered in the transmit direction and double buffered in the receive
direction. This means that bytes to be transmitted cannot be written to the SPI Data
Register before the entire shift cycle is completed. When receiving data, however, a
received character must be read from the SPI Data Register before the next character
has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To
ensure correct sampling of the clock signal, the minimum low and high periods should
be:

Low period: longer than 2 CPU clock cycles

High period: longer than 2 CPU clock cycles
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When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is
overridden according to Table 96. For more details on automatic port overrides, refer to
“Alternate Port Functions” on page 89.

Table 96. SPI Pin Overrides"

Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input
MISO Input User Defined

SCK User Defined Input

SS User Defined Input

Note: 1. See “Alternate Functions of Port B” on page 92 for a detailed description of how to
define the direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to per-
form a simple transmission. DDR_SPI in the examples must be replaced by the actual
Data Direction Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK
must be replaced by the actual data direction bits for these pins. E.g. if MOSI is placed
on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB.
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Assembly Code Example("

SPI_MasterInit:
; Set MOSI and SCK output, all others input
1di rl7, (1<<DD_MOSTI) | (1<<DD_SCK)
out DDR_SPI,rl7
; Enable SPI, Master, set clock rate fck/16
1di rl7, (1<<SPE) | (1<<MSTR) | (1<<SPRO)
out SPCR,r17

ret

SPI_MasterTransmit:
; Start transmission of data (rlé6)
out SPDR, rl6

Wait_Transmit:

; Wait for transmission complete
sbis SPSR, SPIF
rjmp Wait_Transmit

ret

C Code Example"

void SPI_MasterInit (void)

{
/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD_MOSI) | (1<<DD_SCK) ;
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPRO) ;

void SPI_MasterTransmit (char cData)
{
/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */

while (! (SPSR & (1<<SPIF)))

7

Note: 1. See “About Code Examples” on page 9.
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The following code examples show how to initialize the SPI as a Slave and how to per-
form a simple reception.

Assembly Code Example("

SPI_SlaveInit:
; Set MISO output, all others input
1di rl7, (1<<DD_MISO)
out DDR_SPI,rl7
; Enable SPI
1di rl7, (1<<SPE)
out SPCR, rl7

ret

SPI_SlaveReceive:
; Wait for reception complete
sbis SPSR, SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in rl6, SPDR

ret

C Code Example"

void SPI_SlavelInit (void)
{
/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO) ;
/* Enable SPI */
SPCR = (1<<SPE) ;

char SPI_SlaveReceive (void)

{
/* Wait for reception complete */
while (! (SPSR & (1<<SPIF)))
/* Return Data Register */

return SPDR;

Note: 1. See “About Code Examples” on page 9.
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Slave Mode

Master Mode

Data Modes

ATMEL

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When
SS is held low, the SPI is activated, and MISO becomes an output if configured so by
the user. All other pins are inputs. When SS is driven high, all pins are inputs, and the
SPI is passive, which means that it will not receive incoming data. Note that the SPI
logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter syn-
chronous with the master clock generator. When the SS pin is driven high, the SPI slave
will immediately reset the send and receive logic, and drop any partially received data in
the Shift Register.

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine
the direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the
SPI system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If
the SS pin is driven low by peripheral circuitry when the SPI is configured as a Master
with the SS pin defined as an input, the SPI system interprets this as another master
selecting the SPI as a slave and starting to send data to it. To avoid bus contention, the
SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a
result of the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in
SREG is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a
possibility that SS is driven low, the interrupt should always check that the MSTR bit is
still set. If the MSTR bit has been cleared by a slave select, it must be set by the user to
re-enable SPI Master mode.

There are four combinations of SCK phase and polarity with respect to serial data,
which are determined by control bits CPHA and CPOL. The SPI data transfer formats
are shown in Figure 80 and Figure 81. Data bits are shifted out and latched in on oppo-
site edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is
clearly seen by summarizing Table 98 and Table 99, as done below:
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Table 97. CPOL Functionality

Leading Edge Trailing eDge SPI Mode
CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0
CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1
CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2
CPOL=1, CPHA=A Setup (Falling) Sample (Rising) 3

Figure 80. SPI Transfer Format with CPHA =0
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Figure 81. SPI Transfer Format with CPHA =1
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Register Description

SPCR - SPI Control Register
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Bit 7 6 5 4 3 2 1 0
0x2C (0x4C) I SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO I SPCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set
and the if the Global Interrupt Enable bit in SREG is set.

¢ Bit 6 — SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable
any SPI operations.

¢ Bit 5 - DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.

¢ Bit 4 — MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written
logic zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will
be cleared, and SPIF in SPSR will become set. The user will then have to set MSTR to
re-enable SPI Master mode.

e Bit 3 - CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero,
SCK is low when idle. Refer to Figure 80 and Figure 81 for an example. The CPOL func-
tionality is summarized below:

Table 98. CPOL Functionality

CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

¢ Bit 2 - CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading
(first) or trailing (last) edge of SCK. Refer to Figure 80 and Figure 81 for an example.
The CPOL functionality is summarized below:

Table 99. CPHA Functionality

CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample
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SPSR - SPI Status Register
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¢ Bits 1, 0 — SPR1, SPRO: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and
SPRO have no effect on the Slave. The relationship between SCK and the Oscillator
Clock frequency f,.. is shown in the following table:

Table 100. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPRO SCK Frequency

0 0 0 fosc/d

0 1 fosc/16

0 1 0 fosc/64

0 1 1 f.e/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fe/32

1 1 1 fosc/64
Bit 7 6 5 4 3 2 1 0
0x2D (0x4D) | SPIF WCOL - - SPI2X | SPSR
Read/Write R R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 — SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if
SPIE in SPCR is set and global interrupts are enabled. If SS is an input and is driven low
when the SPI is in Master mode, this will also set the SPIF Flag. SPIF is cleared by
hardware when executing the corresponding interrupt handling vector. Alternatively, the
SPIF bit is cleared by first reading the SPI Status Register with SPIF set, then accessing
the SPI Data Register (SPDR).

* Bit 6 — WCOL: Write COLlIision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer.
The WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register
with WCOL set, and then accessing the SPI Data Register.

¢ Bit 5:1 — Res: Reserved Bits

These bits are reserved bits and will always read as zero.

* Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when
the SPI is in Master mode (see Table 100). This means that the minimum SCK period
will be two CPU clock periods. When the SPI is configured as Slave, the SPI is only
guaranteed to work at f . /4 or lower.

The SPI interface on the ATmega640/1280/1281/2560/2561 is also used for program
memory and EEPROM downloading or uploading. See “Serial Downloading” on page
356 for serial programming and verification.
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Bit 7 6 5 4 3 2 1 0

Ox2E (0x4E) | MSB LSB ]| SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

The SPI Data Register is a read/write register used for data transfer between the Regis-
ter File and the SPI Shift Register. Writing to the register initiates data transmission.
Reading the register causes the Shift Register Receive buffer to be read.
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USART
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Overview

2549K-AVR-01/07

The Universal Synchronous and Asynchronous serial Receiver and Transmitter
(USART) is a highly flexible serial communication device. The main features are:

¢ Full Duplex Operation (Independent Serial Receive and Transmit Registers)

¢ Asynchronous or Synchronous Operation

* Master or Slave Clocked Synchronous Operation

* High Resolution Baud Rate Generator

* Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits

* Odd or Even Parity Generation and Parity Check Supported by Hardware

¢ Data OverRun Detection

* Framing Error Detection

* Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter

* Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
* Multi-processor Communication Mode

* Double Speed Asynchronous Communication Mode

The ATmega640/1280/2560 has four USART’s, USARTO, USART1, USARTZ2, and
USARTS3. The functionality for all four USART’s is described below. USARTO, USART1,
USARTZ2, and USART3 have different I/O registers as shown in “Register Summary” on
page 416.

A simplified block diagram of the USART Transmitter is shown in Figure 82 on page
210. CPU accessible I/0O Registers and 1/O pins are shown in bold.

The Power Reducion USARTO bit, PRUSARTO, in “PRRO — Power Reduction Register
0” on page 55 must be disabled by writing a logical zero to it.

The Power Reducion USART1 bit, PRUSART1, in “PRR1 — Power Reduction Register
1” on page 56 must be disabled by writing a logical zero to it.

The Power Reducion USART2 bit, PRUSART2, in “PRR1 — Power Reduction Register
1” on page 56 must be disabled by writing a logical zero to it.

The Power Reducion USARTS3 bit, PRUSARTS, in “PRR1 — Power Reduction Register
1” on page 56 must be disabled by writing a logical zero to it.
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Figure 82. USART Block Diagram")
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Note: 1. See Figure 1 on page 2, Figure 3 on page 4, Table 48 on page 97, Table 51 on page
99, Table 60 on page 107 and Table 63 on page 109 for USART pin placement.

The dashed boxes in the block diagram separate the three main parts of the USART
(listed from the top): Clock Generator, Transmitter and Receiver. Control Registers are
shared by all units. The Clock Generation logic consists of synchronization logic for
external clock input used by synchronous slave operation, and the baud rate generator.
The XCKn (Transfer Clock) pin is only used by synchronous transfer mode. The Trans-
mitter consists of a single write buffer, a serial Shift Register, Parity Generator and
Control logic for handling different serial frame formats. The write buffer allows a contin-
uous transfer of data without any delay between frames. The Receiver is the most
complex part of the USART module due to its clock and data recovery units. The recov-
ery units are used for asynchronous data reception. In addition to the recovery units, the
Receiver includes a Parity Checker, Control logic, a Shift Register and a two level
receive buffer (UDRn). The Receiver supports the same frame formats as the Transmit-
ter, and can detect Frame Error, Data OverRun and Parity Errors.

ATmega640/1280/1281/2560/2561 m———
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Clock Generation The Clock Generation logic generates the base clock for the Transmitter and Receiver.
The USARTnN supports four modes of clock operation: Normal asynchronous, Double
Speed asynchronous, Master synchronous and Slave synchronous mode. The UMSELnN
bit in USART Control and Status Register C (UCSRNC) selects between asynchronous
and synchronous operation. Double Speed (asynchronous mode only) is controlled by
the U2Xn found in the UCSRNnA Register. When using synchronous mode (UMSELn =
1), the Data Direction Register for the XCKn pin (DDR_XCKn) controls whether the
clock source is internal (Master mode) or external (Slave mode). The XCKn pin is only
active when using synchronous mode.

Figure 83 shows a block diagram of the clock generation logic.

Figure 83. Clock Generation Logic, Block Diagram

UBRR
u2x
fosc

Prescaling UBRR+1
Down-Counter 2 >l /4 2 o
A 1
OsSC — txclk
DDR_XCK
y 3
Sync Edge
xcki Register | Detector o
XCK UMSEL
Pin |20 A e
DDR_XCK ucPoL
rxclk

Signal description:
txclk Transmitter clock (Internal Signal).
rxclk Receiver base clock (Internal Signal).
xcki  Input from XCK pin (internal Signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

fosc  XTAL pin frequency (System Clock).
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The Baud Rate Generator
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Internal clock generation is used for the asynchronous and the synchronous master
modes of operation. The description in this section refers to Figure 83.

The USART Baud Rate Register (UBRRnN) and the down-counter connected to it func-
tion as a programmable prescaler or baud rate generator. The down-counter, running at
system clock (f,sc), is loaded with the UBRRn value each time the counter has counted
down to zero or when the UBRRLn Register is written. A clock is generated each time
the counter reaches zero. This clock is the baud rate generator clock output (=
f.sc/(UBRRN+1)). The Transmitter divides the baud rate generator clock output by 2, 8 or
16 depending on mode. The baud rate generator output is used directly by the
Receiver’s clock and data recovery units. However, the recovery units use a state
machine that uses 2, 8 or 16 states depending on mode set by the state of the UMSELRn,
U2Xn and DDR_XCKn bits.

Table 101 contains equations for calculating the baud rate (in bits per second) and for
calculating the UBRRn value for each mode of operation using an internally generated
clock source.

Table 101. Equations for Calculating Baud Rate Register Setting

Equation for Calculating Equation for Calculating

Operating Mode Baud Rate(") UBRR Value
Asynchronous Normal fosc
mode (U2Xn = 0) UBRRN = T6BAUD
fOSC
BAUD =

16(UBRRN+1)

Asynchronous Double
Speed mode (U2Xn =

1)

f
UBRRn = —95€_ _
8BAUD

f
BAUD = —09SC
8(UBRRn + 1)

Synchronous Master fosc
UBRRN = -1
mode 2BAUD

f
BAUD = —090SC
2(UBRRN+1)

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)
BAUD Baud rate (in bits per second, bps)
fosc  System Oscillator clock frequency
UBRRnN Contents of the UBRRHNn and UBRRLn Registers, (0-4095)
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Double Speed Operation
(U2Xn)

External Clock

Synchronous Clock Operation

2549K-AVR-01/07

Some examples of UBRRn values for some system clock frequencies are found in Table
109 on page 232.

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit
only has effect for the asynchronous operation. Set this bit to zero when using synchro-
nous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively
doubling the transfer rate for asynchronous communication. Note however that the
Receiver will in this case only use half the number of samples (reduced from 16 to 8) for
data sampling and clock recovery, and therefore a more accurate baud rate setting and
system clock are required when this mode is used. For the Transmitter, there are no
downsides.

External clocking is used by the synchronous slave modes of operation. The description
in this section refers to Figure 83 for detalils.

External clock input from the XCKn pin is sampled by a synchronization register to mini-
mize the chance of meta-stability. The output from the synchronization register must
then pass through an edge detector before it can be used by the Transmitter and
Receiver. This process introduces a two CPU clock period delay and therefore the max-
imum external XCKn clock frequency is limited by the following equation:

f
0sC
fxck < 4

Note that f ., depends on the stability of the system clock source. It is therefore recom-
mended to add some margin to avoid possible loss of data due to frequency variations.

When synchronous mode is used (UMSELnN = 1), the XCKn pin will be used as either
clock input (Slave) or clock output (Master). The dependency between the clock edges
and data sampling or data change is the same. The basic principle is that data input (on
RxDn) is sampled at the opposite XCKn clock edge of the edge the data output (TxDn)
is changed.

Figure 84. Synchronous Mode XCKn Timing.

UCPOL =1 XCK

wormo Y Y Y Y

Sample

UCPOL =0 XCK

om0 X Y Y Y

Sample

The UCPOLN bit UCRSC selects which XCKn clock edge is used for data sampling and
which is used for data change. As Figure 84 shows, when UCPOLn is zero the data will
be changed at rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set,
the data will be changed at falling XCKn edge and sampled at rising XCKn edge.
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A serial frame is defined to be one character of data bits with synchronization bits (start
and stop bits), and optionally a parity bit for error checking. The USART accepts all 30
combinations of the following as valid frame formats:

e 1 start bit

e 5,6,7,8, or9 data bits

*  no, even or odd parity bit

e 1 or2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next
data bits, up to a total of nine, are succeeding, ending with the most significant bit. If
enabled, the parity bit is inserted after the data bits, before the stop bits. When a com-
plete frame is transmitted, it can be directly followed by a new frame, or the
communication line can be set to an idle (high) state. Figure 85 illustrates the possible
combinations of the frame formats. Bits inside brackets are optional.

Figure 85. Frame Formats

} FRAME |

(IDLE) \ St/ 0 X 1 X 2 X 3 X 4 X[s] X 6] X 7 X [8]X[P] /Spl [sz]\ (St/ IDLE)

St Start bit, always low.
(n) Data bits (0 to 8).
P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line must be
high.

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn
bits in UCSRnB and UCSRnC. The Receiver and Transmitter use the same setting.
Note that changing the setting of any of these bits will corrupt all ongoing communica-
tion for both the Receiver and Transmitter.

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame.
The USART Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selec-
tion between one or two stop bits is done by the USART Stop Bit Select (USBSn) bit.
The Receiver ignores the second stop bit. An FE (Frame Error) will therefore only be
detected in the cases where the first stop bit is zero.

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is
used, the result of the exclusive or is inverted. The parity bit is located between the last
data bit and first stop bit of a serial frame. The relation between the parity bit and data
bits is as follows::

Poyen = 0y _1®...©d;@d, ®d, ®d, @0

even

Pogg =0y 1®...0d,@d, @d, @dy® 1

P..en Parity bit using even parity
P,qq Parity bit using odd parity
d, Data bit n of the character

214 ATmega640/1280/1281/2560/2561 m————

2549K-AVR-01/07



| ATmega640/1 280/1281/2560/2561

USART Initialization
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The USART has to be initialized before any communication can take place. The initial-
ization process normally consists of setting the baud rate, setting frame format and
enabling the Transmitter or the Receiver depending on the usage. For interrupt driven
USART operation, the Global Interrupt Flag should be cleared (and interrupts globally
disabled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that
there are no ongoing transmissions during the period the registers are changed. The
TXCn Flag can be used to check that the Transmitter has completed all transfers, and
the RXC Flag can be used to check that there are no unread data in the receive buffer.
Note that the TXCn Flag must be cleared before each transmission (before UDRn is
written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one
C function that are equal in functionality. The examples assume asynchronous opera-
tion using polling (no interrupts enabled) and a fixed frame format. The baud rate is
given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 Registers.

Assembly Code Example("

USART_Init:
; Set baud rate
out UBRRnH, rl7
out UBRRnL, rlé6
; Enable receiver and transmitter
1di rl6, (1<<RXENn) | (1<<TXENn)
out UCSRnB, rl6
; Set frame format: 8data, 2stop bit
1di rl6, (1<<USBSn) | (3<<UCSZn0)
out UCSRnC, rl6

ret

C Code Example"

#define FOSC 1843200// Clock Speed
#define BAUD 9600

#define (MYUBRR FOSC/16/BAUD-1)

void main( void )

{...

USART_Init ( MYUBRR ) ;

...} // main

void USART_Init( unsigned int ubrr) {
/* Set baud rate */

UBRRH = (unsigned char) (ubrr>>8) ;
UBRRL = (unsigned char)ubrr;

/* Enable receiver and transmitter */
UCSRB = (1<<RXEN) | (1<<TXEN) ;

/* Set frame format: 8data, 2stop bit */
UCSRC = (1<<USBS) | (3<<UCSZ0) ;

} // USART_Init

Note: 1. See “About Code Examples” on page 9.
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More advanced initialization routines can be made that include frame format as parame-
ters, disable interrupts and so on. However, many applications use a fixed setting of the
baud and control registers, and for these types of applications the initialization code can
be placed directly in the main routine, or be combined with initialization code for other
I/O modules.

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the
UCSRNB Register. When the Transmitter is enabled, the normal port operation of the
TxDn pin is overridden by the USART and given the function as the Transmitter’s serial
output. The baud rate, mode of operation and frame format must be set up once before
doing any transmissions. If synchronous operation is used, the clock on the XCKn pin
will be overridden and used as transmission clock.

A data transmission is initiated by loading the transmit buffer with the data to be trans-
mitted. The CPU can load the transmit buffer by writing to the UDRn 1/O location. The
buffered data in the transmit buffer will be moved to the Shift Register when the Shift
Register is ready to send a new frame. The Shift Register is loaded with new data if it is
in idle state (no ongoing transmission) or immediately after the last stop bit of the previ-
ous frame is transmitted. When the Shift Register is loaded with new data, it will transfer
one complete frame at the rate given by the Baud Register, U2Xn bit or by XCKn
depending on mode of operation.

The following code examples show a simple USART transmit function based on polling
of the Data Register Empty (UDREN) Flag. When using frames with less than eight bits,
the most significant bits written to the UDRn are ignored. The USART has to be initial-
ized before the function can be used. For the assembly code, the data to be sent is
assumed to be stored in Register R16

Assembly Code Example("

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART Transmit
; Put data (rl6) into buffer, sends the data
out UDRn, rl6

ret
C Code Example"

void USART_Transmit( unsigned char data )
{
/* Wait for empty transmit buffer */

while ( ! ( UCSRnA & (1<<UDREn)) )

/* Put data into buffer, sends the data */
UDRn = data;

Note: 1. See “About Code Examples” on page 9.

The function simply waits for the transmit buffer to be empty by checking the UDREn
Flag, before loading it with new data to be transmitted. If the Data Register Empty inter-
rupt is utilized, the interrupt routine writes the data into the buffer.
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Sending Frames with 9 Data
Bit

2549K-AVR-01/07

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in
UCSRnNB before the low byte of the character is written to UDRn. The following code
examples show a transmit function that handles 9-bit characters. For the assembly
code, the data to be sent is assumed to be stored in registers R17:R16.

Assembly Code Example("®

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART_Transmit
; Copy 9th bit from rl7 to TXB8
cbi UCSRnB, TXB8
sbrc rl17,0
sbi  UCSRnB, TXB8
; Put LSB data (rl6) into buffer, sends the data
out UDRn, rlé

ret

C Code ExampleM®

void USART_Transmit( unsigned int data )
{
/* Wait for empty transmit buffer */
while ( ! ( UCSRnA & (1<<UDREn))) )
/* Copy 9th bit to TXB8 */
UCSRnB &= ~(1<<TXB8) ;
if ( data & 0x0100 )
UCSRnB |= (1<<TXBS8);
/* Put data into buffer, sends the data */
UDRn = data;

Notes: 1. These transmit functions are written to be general functions. They can be optimized if
the contents of the UCSRnNB is static. For example, only the TXB8 bit of the UCSRnB
Register is used after initialization.
2. See “About Code Examples” on page 9.

The ninth bit can be used for indicating an address frame when using multi processor
communication mode or for other protocol handling as for example synchronization.
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The USART Transmitter has two flags that indicate its state: USART Data Register
Empty (UDREnN) and Transmit Complete (TXCn). Both flags can be used for generating
interrupts.

The Data Register Empty (UDREN) Flag indicates whether the transmit buffer is ready to
receive new data. This bit is set when the transmit buffer is empty, and cleared when the
transmit buffer contains data to be transmitted that has not yet been moved into the Shift
Register. For compatibility with future devices, always write this bit to zero when writing
the UCSRNA Register.

When the Data Register Empty Interrupt Enable (UDRIEnN) bit in UCSRNB is written to
one, the USART Data Register Empty Interrupt will be executed as long as UDRERn is
set (provided that global interrupts are enabled). UDRER is cleared by writing UDRnN.
When interrupt-driven data transmission is used, the Data Register Empty interrupt rou-
tine must either write new data to UDRn in order to clear UDREn or disable the Data
Register Empty interrupt, otherwise a new interrupt will occur once the interrupt routine
terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit
Shift Register has been shifted out and there are no new data currently present in the
transmit buffer. The TXCn Flag bit is automatically cleared when a transmit complete
interrupt is executed, or it can be cleared by writing a one to its bit location. The TXCn
Flag is useful in half-duplex communication interfaces (like the RS-485 standard), where
a transmitting application must enter receive mode and free the communication bus
immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the
USART Transmit Complete Interrupt will be executed when the TXCn Flag becomes set
(provided that global interrupts are enabled). When the transmit complete interrupt is
used, the interrupt handling routine does not have to clear the TXCn Flag, this is done
automatically when the interrupt is executed.

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is
enabled (UPMn1 = 1), the transmitter control logic inserts the parity bit between the last
data bit and the first stop bit of the frame that is sent.

The disabling of the Transmitter (setting the TXEN to zero) will not become effective
until ongoing and pending transmissions are completed, i.e., when the Transmit Shift
Register and Transmit Buffer Register do not contain data to be transmitted. When dis-
abled, the Transmitter will no longer override the TxDn pin.
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Data Reception — The The USART Receiver is enabled by writing the Receive Enable (RXENN) bit in the

USART Receiver UCSRNB Register to one. When the Receiver is enabled, the normal pin operation of
the RxDn pin is overridden by the USART and given the function as the Receiver’s serial
input. The baud rate, mode of operation and frame format must be set up once before
any serial reception can be done. If synchronous operation is used, the clock on the
XCKn pin will be used as transfer clock.

Receiving Frames with 5t0 8 The Receiver starts data reception when it detects a valid start bit. Each bit that follows

Data Bits the start bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive
Shift Register until the first stop bit of a frame is received. A second stop bit will be
ignored by the Receiver. When the first stop bit is received, i.e., a complete serial frame
is present in the Receive Shift Register, the contents of the Shift Register will be moved
into the receive buffer. The receive buffer can then be read by reading the UDRn I/O
location.

The following code example shows a simple USART receive function based on polling
of the Receive Complete (RXCn) Flag. When using frames with less than eight bits the
most significant bits of the data read from the UDRn will be masked to zero. The USART
has to be initialized before the function can be used.

Assembly Code Example("

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get and return received data from buffer
in rl6, UDRn

ret

C Code Example"

unsigned char USART Receive( void )
{
/* Wait for data to be received */

while ( ! (UCSRnA & (1<<RXCn)) )

/* Get and return received data from buffer */

return UDRn;

Note: 1. See “About Code Examples” on page 9.

The function simply waits for data to be present in the receive buffer by checking the
RXCn Flag, before reading the buffer and returning the value.

Receiving Frames with 9 Data If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in

Bits UCSRnNB before reading the low bits from the UDRn. This rule applies to the FEn,
DORnN and UPEnN Status Flags as well. Read status from UCSRnA, then data from
UDRn. Reading the UDRn I/O location will change the state of the receive buffer FIFO
and consequently the TXB8n, FEn, DORn and UPEn bits, which all are stored in the
FIFO, will change.

The following code example shows a simple USART receive function that handles both
nine bit characters and the status bits.
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Assembly Code Example("

USART_Receive:

; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART Receive

; Get status and 9th bit, then data from buffer

in rl8, UCSRnA

in rl7, UCSRnB

in rl6, UDRn

; If error, return -1

andi rl18, (1<<FEn) | (1<<DORn) | (1<<UPEn)

breq USART_ReceiveNoError

1di r17, HIGH(-1)

1di rl16, LOwW(-1)
USART_ReceiveNoError:

; Filter the 9th bit, then return

1sr rl7

andi rl7, 0x01

ret

C Code Example"

unsigned int USART Receive( void )

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while ( ! (UCSRnA & (1<<RXCn)) )

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRnA;

resh = UCSRnB;

resl = UDRn;

/* If error, return -1 */

if ( status & (1<<FEn) | (1<<DORn) | (1<<UPEn) )
return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

Note: 1. See “About Code Examples” on page 9.

The receive function example reads all the I/O Registers into the Register File before
any computation is done. This gives an optimal receive buffer utilization since the buffer
location read will be free to accept new data as early as possible.
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Receive Compete Flag and The USART Receiver has one flag that indicates the Receiver state.

Interrupt The Receive Complete (RXCn) Flag indicates if there are unread data present in the

receive buffer. This flag is one when unread data exist in the receive buffer, and zero
when the receive buffer is empty (i.e., does not contain any unread data). If the Receiver
is disabled (RXENnN = 0), the receive buffer will be flushed and consequently the RXCn
bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnNB is set, the USART
Receive Complete interrupt will be executed as long as the RXCn Flag is set (provided
that global interrupts are enabled). When interrupt-driven data reception is used, the
receive complete routine must read the received data from UDRn in order to clear the
RXCn Flag, otherwise a new interrupt will occur once the interrupt routine terminates.

Receiver Error Flags The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORN)
and Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the
Error Flags is that they are located in the receive buffer together with the frame for which
they indicate the error status. Due to the buffering of the Error Flags, the UCSRnA must
be read before the receive buffer (UDRn), since reading the UDRn 1/O location changes
the buffer read location. Another equality for the Error Flags is that they can not be
altered by software doing a write to the flag location. However, all flags must be set to
zero when the UCSRNA is written for upward compatibility of future USART implementa-
tions. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable
frame stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly
read (as one), and the FEn Flag will be one when the stop bit was incorrect (zero). This
flag can be used for detecting out-of-sync conditions, detecting break conditions and
protocol handling. The FEn Flag is not affected by the setting of the USBSn bit in UCS-
RnC since the Receiver ignores all, except for the first, stop bits. For compatibility with
future devices, always set this bit to zero when writing to UCSRnA.

The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condi-
tion. A Data OverRun occurs when the receive buffer is full (two characters), it is a new
character waiting in the Receive Shift Register, and a new start bit is detected. If the
DORn Flag is set there was one or more serial frame lost between the frame last read
from UDRn, and the next frame read from UDRn. For compatibility with future devices,
always write this bit to zero when writing to UCSRnA. The DORn Flag is cleared when
the frame received was successfully moved from the Shift Register to the receive buffer.

The Parity Error (UPEnN) Flag indicates that the next frame in the receive buffer had a
Parity Error when received. If Parity Check is not enabled the UPEn bit will always be
read zero. For compatibility with future devices, always set this bit to zero when writing
to UCSRnA. For more details see “Parity Bit Calculation” on page 214 and “Parity
Checker” on page 221.

Parity Checker The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set.
Type of Parity Check to be performed (odd or even) is selected by the UPMnO bit. When
enabled, the Parity Checker calculates the parity of the data bits in incoming frames and
compares the result with the parity bit from the serial frame. The result of the check is
stored in the receive buffer together with the received data and stop bits. The Parity
Error (UPEN) Flag can then be read by software to check if the frame had a Parity Error.

The UPERN bit is set if the next character that can be read from the receive buffer had a
Parity Error when received and the Parity Checking was enabled at that point (UPMn1 =
1). This bit is valid until the receive buffer (UDRn) is read.
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In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from
ongoing receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero)
the Receiver will no longer override the normal function of the RxDn port pin. The
Receiver buffer FIFO will be flushed when the Receiver is disabled. Remaining data in
the buffer will be lost

The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer
will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed
during normal operation, due to for instance an error condition, read the UDRn 1/O loca-
tion until the RXCn Flag is cleared. The following code example shows how to flush the
receive buffer.

Assembly Code Example("

USART _Flush:
sbis UCSRnA, RXCn
ret
in rl6, UDRn
rjmp USART Flush

C Code Example"

void USART_Flush( void )
{
unsigned char dummy;

while ( UCSRnA & (1<<RXCn) ) dummy = UDRn;

Note: 1. See “About Code Examples” on page 9.
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The USART includes a clock recovery and a data recovery unit for handling asynchro-
nous data reception. The clock recovery logic is used for synchronizing the internally
generated baud rate clock to the incoming asynchronous serial frames at the RxDn pin.
The data recovery logic samples and low pass filters each incoming bit, thereby improv-
ing the noise immunity of the Receiver. The asynchronous reception operational range
depends on the accuracy of the internal baud rate clock, the rate of the incoming
frames, and the frame size in number of bits.

The clock recovery logic synchronizes internal clock to the incoming serial frames. Fig-
ure 86 illustrates the sampling process of the start bit of an incoming frame. The sample
rate is 16 times the baud rate for Normal mode, and eight times the baud rate for Double
Speed mode. The horizontal arrows illustrate the synchronization variation due to the
sampling process. Note the larger time variation when using the Double Speed mode
(U2Xn = 1) of operation. Samples denoted zero are samples done when the RxDn line
is idle (i.e., no communication activity).

Figure 86. Start Bit Sampling
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When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn
line, the start bit detection sequence is initiated. Let sample 1 denote the first zero-sam-
ple as shown in the figure. The clock recovery logic then uses samples 8, 9, and 10 for
Normal mode, and samples 4, 5, and 6 for Double Speed mode (indicated with sample
numbers inside boxes on the figure), to decide if a valid start bit is received. If two or
more of these three samples have logical high levels (the majority wins), the start bit is
rejected as a noise spike and the Receiver starts looking for the next high to low-transi-
tion. If however, a valid start bit is detected, the clock recovery logic is synchronized and
the data recovery can begin. The synchronization process is repeated for each start bit.

When the receiver clock is synchronized to the start bit, the data recovery can begin.
The data recovery unit uses a state machine that has 16 states for each bit in Normal
mode and eight states for each bit in Double Speed mode. Figure 87 shows the sam-
pling of the data bits and the parity bit. Each of the samples is given a number that is
equal to the state of the recovery unit.

Figure 87. Sampling of Data and Parity Bit
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The decision of the logic level of the received bit is taken by doing a majority voting of
the logic value to the three samples in the center of the received bit. The center samples
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are emphasized on the figure by having the sample number inside boxes. The majority
voting process is done as follows: If two or all three samples have high levels, the
received bit is registered to be a logic 1. If two or all three samples have low levels, the
received bit is registered to be a logic 0. This majority voting process acts as a low pass
filter for the incoming signal on the RxDn pin. The recovery process is then repeated
until a complete frame is received. Including the first stop bit. Note that the Receiver only
uses the first stop bit of a frame.

Figure 88 shows the sampling of the stop bit and the earliest possible beginning of the
start bit of the next frame.

Figure 88. Stop Bit Sampling and Next Start Bit Sampling
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The same majority voting is done to the stop bit as done for the other bits in the frame. If
the stop bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after
the last of the bits used for majority voting. For Normal Speed mode, the first low level
sample can be at point marked (A) in Figure 88. For Double Speed mode the first low
level must be delayed to (B). (C) marks a stop bit of full length. The early start bit detec-
tion influences the operational range of the Receiver.

The operational range of the Receiver is dependent on the mismatch between the
received bit rate and the internally generated baud rate. If the Transmitter is sending
frames at too fast or too slow bit rates, or the internally generated baud rate of the
Receiver does not have a similar (see Table 102) base frequency, the Receiver will not
be able to synchronize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and
internal receiver baud rate.

R _ (D+1)S

- (D+1)s (D+2)S
slow ™ S_1+D-S+S¢

Rigst = sl
fast = (D+1)S+5,,

D Sum of character size and parity size (D =5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.

Sg  First sample number used for majority voting. Sg = 8 for normal speed and Sg = 4
for Double Speed mode.

Sy Middle sample number used for majority voting. Sy, = 9 for normal speed and
Sy = 5 for Double Speed mode.

R, 0w is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Ry, is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.
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Table 102 and Table 103 list the maximum receiver baud rate error that can be toler-
ated. Note that Normal Speed mode has higher toleration of baud rate variations.

Table 102. Recommended Maximum Receiver Baud Rate Error for Normal Speed

Mode (U2Xn = 0)

D Recommended Max
# (Data+Parity Bit) | Ry, (%) | Riast(%) | Max Total Error (%) Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 +3.0

6 94.12 105.79 +5.79/-5.88 +25

7 94.81 105.11 +5.11/-5.19 +2.0

8 95.36 104.58 +4.58/-4.54 +2.0

9 95.81 104.14 +4.14/-4.19 +15

10 96.17 103.78 +3.78/-3.83 +15

Table 103. Recommended Maximum Receiver Baud Rate Error for Double Speed

Mode (U2Xn = 1)

D Recommended Max
# (Data+Parity Bit) | R, (%) | Rast (%) | Max Total Error (%) Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 +25

6 94.92 104.92 +4.92/-5.08 +2.0

7 95.52 104,35 +4.35/-4.48 +15

8 96.00 103.90 +3.90/-4.00 +15

9 96.39 103.53 +3.53/-3.61 +15

10 96.70 103.23 +3.23/-3.30 +1.0

The recommendations of the maximum receiver baud rate error was made under the
assumption that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system
clock (XTAL) will always have some minor instability over the supply voltage range and
the temperature range. When using a crystal to generate the system clock, this is rarely
a problem, but for a resonator the system clock may differ more than 2% depending of
the resonators tolerance. The second source for the error is more controllable. The baud
rate generator can not always do an exact division of the system frequency to get the
baud rate wanted. In this case an UBRR value that gives an acceptable low error can be

used if possible.

ATMEL
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Setting the Multi-processor Communication mode (MPCMn) bit in UCSRnA enables a
filtering function of incoming frames received by the USART Receiver. Frames that do
not contain address information will be ignored and not put into the receive buffer. This
effectively reduces the number of incoming frames that has to be handled by the CPU,
in a system with multiple MCUs that communicate via the same serial bus. The Trans-
mitter is unaffected by the MPCMn setting, but has to be used differently when it is a
part of a system utilizing the Multi-processor Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop
bit indicates if the frame contains data or address information. If the Receiver is set up
for frames with nine data bits, then the ninth bit (RXB8n) is used for identifying address
and data frames. When the frame type bit (the first stop or the ninth bit) is one, the frame
contains an address. When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data
from a master MCU. This is done by first decoding an address frame to find out which
MCU has been addressed. If a particular slave MCU has been addressed, it will receive
the following data frames as normal, while the other slave MCUs will ignore the received
frames until another address frame is received.

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn
= 7). The ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared
when a data frame (TXB = 0) is being transmitted. The slave MCUs must in this case be
set to use a 9-bit character frame format.

The following procedure should be used to exchange data in Multi-processor Communi-
cation mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in UCS-
RnA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this
frame. In the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been
selected. If so, it clears the MPCMn bit in UCSRnA, otherwise it waits for the next
address byte and keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is
received. The other Slave MCUs, which still have the MPCMn bit set, will ignore
the data frames.

5. When the last data frame is received by the addressed MCU, the addressed
MCU sets the MPCMn bit and waits for a new address frame from master. The
process then repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes
full-duplex operation difficult since the Transmitter and Receiver uses the same charac-
ter size setting. If 5- to 8-bit character frames are used, the Transmitter must be set to
use two stop bit (USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit.
The MPCMn bit shares the same 1/O location as the TXCn Flag and this might acciden-
tally be cleared when using SBI or CBI instructions.
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The following section describes the USART’s registers.

Bit 7 6 5 4 3 2 1 0
RXB[7:0] UDRn (Read)
TXB[7:0] UDRn (Write)
Read/Write R/W RIW RIW RW RW RIW RIW RW
Initial Value 0 0 0 0 0 0 0 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers
share the same I/O address referred to as USART Data Register or UDRn. The Trans-
mit Data Buffer Register (TXB) will be the destination for data written to the UDRn
Register location. Reading the UDRn Register location will return the contents of the
Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter
and set to zero by the Receiver.

The transmit buffer can only be written when the UDREnR Flag in the UCSRnA Register
is set. Data written to UDRn when the UDREnN Flag is not set, will be ignored by the
USART Transmitter. When data is written to the transmit buffer, and the Transmitter is
enabled, the Transmitter will load the data into the Transmit Shift Register when the
Shift Register is empty. Then the data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever
the receive buffer is accessed. Due to this behavior of the receive buffer, do not use
Read-Modify-Write instructions (SBI and CBI) on this location. Be careful when using bit
test instructions (SBIC and SBIS), since these also will change the state of the FIFO.

Bit 7 6 5 4 3 2 1 0

| mxcn TXCn | UDREn FEn DORn UPEn U2Xn | MPCMn | UCSRnA
Read/Write R R/W R R R R R/W R/W
Initial Value 0 0 1 0 0 0 0 0

e Bit 7 - RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the
receive buffer is empty (i.e., does not contain any unread data). If the Receiver is dis-
abled, the receive buffer will be flushed and consequently the RXCn bit will become
zero. The RXCn Flag can be used to generate a Receive Complete interrupt (see
description of the RXCIEn bit).

e Bit 6 — TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted
out and there are no new data currently present in the transmit buffer (UDRn). The
TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed,
or it can be cleared by writing a one to its bit location. The TXCn Flag can generate a
Transmit Complete interrupt (see description of the TXCIEn bit).

e Bit 5 - UDREn: USART Data Register Empty

The UDREN Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If
UDRERnN is one, the buffer is empty, and therefore ready to be written. The UDREnN Flag
can generate a Data Register Empty interrupt (see description of the UDRIEn bit).

UDRERn is set after a reset to indicate that the Transmitter is ready.
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¢ Bit 4 — FEn: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when
received. l.e., when the first stop bit of the next character in the receive buffer is zero.
This bit is valid until the receive buffer (UDRn) is read. The FEn bit is zero when the stop
bit of received data is one. Always set this bit to zero when writing to UCSRnA.

¢ Bit 3 - DORn: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the
receive buffer is full (two characters), it is a new character waiting in the Receive Shift
Register, and a new start bit is detected. This bit is valid until the receive buffer (UDRn)
is read. Always set this bit to zero when writing to UCSRnA.

e Bit 2 - UPEn: USART Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received
and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the
receive buffer (UDRN) is read. Always set this bit to zero when writing to UCSRnA.

e Bit 1 — U2Xn: Double the USART Transmission Speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using
synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effec-
tively doubling the transfer rate for asynchronous communication.

e Bit 0 — MPCMn: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCMn bit is writ-
ten to one, all the incoming frames received by the USART Receiver that do not contain
address information will be ignored. The Transmitter is unaffected by the MPCMn set-
ting. For more detailed information see “Multi-processor Communication Mode” on page
226.

Bit 7 6 5 4 3 2 1 0

I RXCIEn | TXCIEn | UDRIEn | RXENn | TXENn | UCSZn2 | RXB8n | TXB8n I UCSRnB
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — RXCIEn: RX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete
interrupt will be generated only if the RXCIEn bit is written to one, the Global Interrupt
Flag in SREG is written to one and the RXCn bit in UCSRnA is set.

¢ Bit 6 — TXCIEn: TX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete
interrupt will be generated only if the TXCIEn bit is written to one, the Global Interrupt
Flag in SREG is written to one and the TXCn bit in UCSRnA is set.
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e Bit 5 - UDRIEn: USART Data Register Empty Interrupt Enable n

Writing this bit to one enables interrupt on the UDREnN Flag. A Data Register Empty
interrupt will be generated only if the UDRIEn bit is written to one, the Global Interrupt
Flag in SREG is written to one and the UDRER bit in UCSRnA is set.

¢ Bit 4 — RXENn: Receiver Enable n

Writing this bit to one enables the USART Receiver. The Receiver will override normal
port operation for the RxDn pin when enabled. Disabling the Receiver will flush the
receive buffer invalidating the FEn, DORn, and UPEn Flags.

¢ Bit 3 — TXENn: Transmitter Enable n

Writing this bit to one enables the USART Transmitter. The Transmitter will override nor-
mal port operation for the TxDn pin when enabled. The disabling of the Transmitter
(writing TXENN to zero) will not become effective until ongoing and pending transmis-
sions are completed, i.e., when the Transmit Shift Register and Transmit Buffer Register
do not contain data to be transmitted. When disabled, the Transmitter will no longer
override the TxDn port.

e Bit 2 - UCSZn2: Character Size n

The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRNC sets the number of data
bits (Character SiZe) in a frame the Receiver and Transmitter use.

¢ Bit 1 — RXB8n: Receive Data Bit 8 n

RXB8n is the ninth data bit of the received character when operating with serial frames
with nine data bits. Must be read before reading the low bits from UDRn.

¢ Bit 0 — TXB8n: Transmit Data Bit 8 n

TXB8n is the ninth data bit in the character to be transmitted when operating with serial
frames with nine data bits. Must be written before writing the low bits to UDRn.

Bit 7 6 5 4 3 2 1 0
I UMSELN1 UMSELNO UPMn1 UPMnO USBSn UCSZn1 UCSzZno UCPOLN I UCSRNnC

Read/Write RW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 1 1 0

¢ Bits 7:6 — UMSELN1:0 USART Mode Select

These bits select the mode of operation of the USARTn as shown in Table 104.

Table 104. UMSELRnN Bits Settings

UMSELN1 UMSELNO Mode
0 0 Asynchronous USART
0 1 Synchronous USART
1 0 (Reserved)
1 1 Master SPI (MSPIM)(™"

Note: 1. See “USART in SPI Mode” on page 236 for full description of the Master SPI Mode
(MSPIM) operation
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¢ Bits 5:4 — UPMn1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the Transmit-
ter will automatically generate and send the parity of the transmitted data bits within
each frame. The Receiver will generate a parity value for the incoming data and com-
pare it to the UPMn setting. If a mismatch is detected, the UPEn Flag in UCSRnA will be

set.

Table 105. UPMn Bits Settings

UPMn1 UPMnNO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity

1

1

Enabled, Odd Parity

e Bit 3 - USBSn: Stop Bit Select

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver
ignores this setting.

Table 106. USBS Bit Settings

USBSn Stop Bit(s)
0 1-bit
1 2-bit

e Bit 2:1 - UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRNB sets the number of data
bits (Character SiZe) in a frame the Receiver and Transmitter use.

Table 107. UCSZn Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size
0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit
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* Bit 0 — UCPOLN: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous
mode is used. The UCPOLn bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCKn).

Table 108. UCPOLnN Bit Settings

Transmitted Data Changed (Output Received Data Sampled (Input on
UCPOLn | of TxDn Pin) RxDn Pin)
0 Rising XCKn Edge Falling XCKn Edge
1 Falling XCKn Edge Rising XCKn Edge
Bit 15 14 13 12 11 10 9 8
- - - - | UBRR[11:8] UBRRHn
UBRR[7:0] UBRRLn
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W RW RW R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0
0 0 0 0 0 0

¢ Bit 15:12 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit
must be written to zero when UBRRH is written.

e Bit 11:0 — UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the
four most significant bits, and the UBRRL contains the eight least significant bits of the
USART baud rate. Ongoing transmissions by the Transmitter and Receiver will be cor-
rupted if the baud rate is changed. Writing UBRRL will trigger an immediate update of
the baud rate prescaler.
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Examples of Baud Rate  For standard crystal and resonator frequencies, the most commonly used baud rates for
Setting

asynchronous operation can be generated by using the UBRR settings in Table 109 to
Table 112. UBRR values which yield an actual baud rate differing less than 0.5% from
the target baud rate, are bold in the table. Higher error ratings are acceptable, but the
Receiver will have less noise resistance when the error ratings are high, especially for
large serial frames (see “Asynchronous Operational Range” on page 224). The error
values are calculated using the following equation:

BaudRate
Error(%] = (——_—desestilaeh _ 1) 4 100
Table 109. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies
f,sc = 1.0000 MHz f s = 1.8432 MHz f,sc = 2.0000 MHz
gg:‘ed U2Xn =0 U2Xn = 1 U2Xn =0 U2Xn =1 U2Xn =0 U2Xn =1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - 0 0.0%
Max. (" 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

1.
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Table 110. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 3.6864 MHz fosc = 4.0000 MHz fosc = 7.3728 MHz
paud U2Xn =0 U2Xn = 1 U2Xn =0 u2Xn = 1 U2Xn = 0 U2Xn = 1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%
19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%
38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
0.5M - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
1M - - - - - - - - - - 0 -7.8%
Max. (" 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kbps 921.6 kbps
1. UBRR =0, Error = 0.0%
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Table 111. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 8.0000 MHz fosc = 11.0592 MHz fosc = 14.7456 MHz
paud U2Xn = 0 u2Xn = 1 U2Xn =0 U2Xn = 1 U2Xn =0 u2Xn = 1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%
4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%
9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%
14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%
19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%
28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%
38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%
57.6k 8 -3.5% 16 21% 11 0.0% 23 0.0% 15 0.0% 31 0.0%
76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%
115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%
230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%
250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%
0.5M 0 0.0% 1 0.0% - - 2 -7.8% 1 -7.8% 3 -7.8%
1M - - 0 0.0% - - - - 0 -7.8% 1 -7.8%
Max. (M 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps
1. UBRR =0, Error = 0.0%
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Table 112. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

f.sc = 16.0000 MHz foc = 18.4320 MHz fosc = 20.0000 MHz
ﬁ::‘ed U2Xn =0 u2Xn = 1 U2Xn = 0 u2Xn = 1 U2Xn = 0 u2Xn =1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%
4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%
9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%
14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%
19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%
28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%
38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%
57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%
76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%
115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%
230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%
250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%
0.5M 1 0.0% 3 0.0% - - 4 -7.8% - - 4 0.0%
1M 0 0.0% 1 0.0% - - - - - - - -
Max. (" 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps
1. UBRR =0, Error = 0.0%
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USART in SPI Mode

Overview

USART MSPIM vs. SPI

Clock Generation

ATMEL

The Universal Synchronous and Asynchronous serial Receiver and Transmitter
(USART) can be set to a master SPI compliant mode of operation. The Master SPI
Mode (MSPIM) has the following features:

Full Duplex, Three-wire Synchronous Data Transfer

Master Operation

Supports all four SPI Modes of Operation (Mode 0, 1, 2, and 3)

LSB First or MSB First Data Transfer (Configurable Data Order)

Queued Operation (Double Buffered)

High Resolution Baud Rate Generator

High Speed Operation (fXCKmax = fCK/2)

Flexible Interrupt Generation

Setting both UMSELN1:0 bits to one enables the USART in MSPIM logic. In this mode of
operation the SPI master control logic takes direct control over the USART resources.
These resources include the transmitter and receiver shift register and buffers, and the
baud rate generator. The parity generator and checker, the data and clock recovery
logic, and the RX and TX control logic is disabled. The USART RX and TX control logic
is replaced by a common SPI transfer control logic. However, the pin control logic and
interrupt generation logic is identical in both modes of operation.

The 1/O register locations are the same in both modes. However, some of the functional-
ity of the control registers changes when using MSPIM.

The AVR USART in MSPIM mode is fully compatible with the AVR SPI regarding:

¢ Master mode timing diagram.

e The UCPOLRN bit functionality is identical to the SPI CPOL bit.

e The UCPHARN bit functionality is identical to the SPI CPHA bit.

e The UDORDN bit functionality is identical to the SPI DORD bit.

However, since the USART in MSPIM mode reuses the USART resources, the use of
the USART in MSPIM mode is somewhat different compared to the SPI. In addition to

differences of the control register bits, and that only master operation is supported by
the USART in MSPIM mode, the following features differ between the two modules:

e The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI
has no buffer.

e The USART in MSPIM mode receiver includes an additional buffer level.

e The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode.

e The SPI double speed mode (SPI12X) bit is not included. However, the same effect is
achieved by setting UBRRn accordingly.

e Interrupt timing is not compatible.

¢ Pin control differs due to the master only operation of the USART in MSPIM mode.

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 116 on
page 244

The Clock Generation logic generates the base clock for the Transmitter and Receiver.
For USART MSPIM mode of operation only internal clock generation (i.e. master opera-
tion) is supported. The Data Direction Register for the XCKn pin (DDR_XCKn) must
therefore be set to one (i.e. as output) for the USART in MSPIM to operate correctly.
Preferably the DDR_XCKn should be set up before the USART in MSPIM is enabled
(i.e. TXENn and RXENN bit set to one).
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SPI Data Modes and
Timing

2549K-AVR-01/07

The internal clock generation used in MSPIM mode is identical to the USART synchro-
nous master mode. The baud rate or UBRRn setting can therefore be calculated using
the same equations, see Table 113:

Table 113. Equations for Calculating Baud Rate Register Setting

Equation for Calculating Baud Equation for Calculating
Operating Mode Rate(" UBRRn Value
Synchronous Master
mode
fOSC fOSC
BAUD = —————=—— UBRRN = ——=—=— —
2(UBRRn+1) 2BAUD

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)
BAUD Baud rate (in bits per second, bps)
fosc  System Oscillator clock frequency
UBRRnN Contents of the UBRRnH and UBRRnNL Registers, (0-4095)

There are four combinations of XCKn (SCK) phase and polarity with respect to serial
data, which are determined by control bits UCPHAn and UCPOLN. The data transfer
timing diagrams are shown in Figure 89. Data bits are shifted out and latched in on
opposite edges of the XCKn signal, ensuring sufficient time for data signals to stabilize.
The UCPOLn and UCPHAnN functionality is summarized in Table 114. Note that chang-
ing the setting of any of these bits will corrupt all ongoing communication for both the
Receiver and Transmitter.

Table 114. UCPOLn and UCPHAN Functionality-

UCPOLnN UCPHAN SPI Mode Leading Edge Trailing Edge
0 0 0 Sample (Rising) Setup (Falling)
0 1 1 Setup (Rising) Sample (Falling)
1 0 2 Sample (Falling) Setup (Rising)
1 1 3 Setup (Falling) Sample (Rising)
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USART MSPIM Initialization
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Figure 89. UCPHAnN and UCPOLn data transfer timing diagrams.

UCPOL=0 UCPOL=1

4 XK L L XCK L L
I

& paasetpmx0) LI Datasetup(x0) _ L k| [
> Data sample (RXD) T T T T Data sample (RXD) T T T T
3 xex L L XCK L L
g Data setup (TXD) 4X_X_X__X Data setup (TXD) 4X_X_X__X
> Data sample (RXD) T T T T Data sample (RXD) T T T T

A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART
in MSPIM mode has two valid frame formats:

e  8-bit data with MSB first
e  8-bit data with LSB first

A frame starts with the least or most significant data bit. Then the next data bits, up to a
total of eight, are succeeding, ending with the most or least significant bit accordingly.
When a complete frame is transmitted, a new frame can directly follow it, or the commu-
nication line can be set to an idle (high) state.

The UDORDnN bit in UCSRNC sets the frame format used by the USART in MSPIM
mode. The Receiver and Transmitter use the same setting. Note that changing the set-
ting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter.

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART trans-
mit complete interrupt will then signal that the 16-bit value has been shifted out.

The USART in MSPIM mode has to be initialized before any communication can take
place. The initialization process normally consists of setting the baud rate, setting mas-
ter mode of operation (by setting DDR_XCKn to one), setting frame format and enabling
the Transmitter and the Receiver. Only the transmitter can operate independently. For
interrupt driven USART operation, the Global Interrupt Flag should be cleared (and thus
interrupts globally disabled) when doing the initialization.

Note:  To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn)
must be zero at the time the transmitter is enabled. Contrary to the normal mode USART
operation the UBRRn must then be written to the desired value after the transmitter is
enabled, but before the first transmission is started. Setting UBRRn to zero before
enabling the transmitter is not necessary if the initialization is done immediately after a
reset since UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be
sure that there is no ongoing transmissions during the period the registers are changed.
The TXCn Flag can be used to check that the Transmitter has completed all transfers,
and the RXCn Flag can be used to check that there are no unread data in the receive
buffer. Note that the TXCn Flag must be cleared before each transmission (before
UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one
C function that are equal in functionality. The examples assume polling (no interrupts
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enabled). The baud rate is given as a function parameter. For the assembly code, the
baud rate parameter is assumed to be stored in the r17:r16 registers.

Assembly Code Example("

USART_Init:
clr rl8
out UBRRnH,rl8
out UBRRnL,rl8
; Setting the XCKn port pin as output, enables master mode.
sbi XCKn_DDR, XCKn
; Set MSPI mode of operation and SPI data mode O.
1di rl18, (1<<UMSELnl) | (1<<UMSELnO) | (0<<UCPHAn) | (0<<UCPOLn)
out UCSRnC,rl8
; Enable receiver and transmitter.
1di rl8, (1<<RXENn) | (1<<TXENn)
out UCSRnB,rl8
; Set baud rate.
; IMPORTANT: The Baud Rate must be set after the transmitter is enabled!
out UBRRnH, rl7
out UBRRnL, rl8

ret

C Code Example"

void USART_Init( unsigned int baud )
{
UBRRn = 0;
/* Setting the XCKn port pin as output, enables master mode. */
XCKn_DDR |= (1<<XCKn) ;
/* Set MSPI mode of operation and SPI data mode 0. */
UCSRnC = (1<<UMSELnl) | (1<<UMSELnO) | (0<<UCPHAn) | (0<<UCPOLn) ;
/* Enable receiver and transmitter. */
UCSRnB = (1<<RXENn) | (1<<TXENn) ;
/* Set baud rate. */

/* IMPORTANT: The Baud Rate must be set after the transmitter is enabled
*/
UBRRn = baud;

Note: 1. See “About Code Examples” on page 9.
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Using the USART in MSPI mode requires the Transmitter to be enabled, i.e. the TXENn
bit in the UCSRnNB register is set to one. When the Transmitter is enabled, the normal
port operation of the TxDn pin is overridden and given the function as the Transmitter's
serial output. Enabling the receiver is optional and is done by setting the RXENN bit in
the UCSRNB register to one. When the receiver is enabled, the normal pin operation of
the RxDn pin is overridden and given the function as the Receiver's serial input. The
XCKn will in both cases be used as the transfer clock.

After initialization the USART is ready for doing data transfers. A data transfer is initiated
by writing to the UDRn 1/O location. This is the case for both sending and receiving data
since the transmitter controls the transfer clock. The data written to UDRn is moved from
the transmit buffer to the shift register when the shift register is ready to send a new
frame.

Note:  To keep the input buffer in sync with the number of data bytes transmitted, the UDRn reg-
ister must be read once for each byte transmitted. The input buffer operation is identical
to normal USART mode, i.e. if an overflow occurs the character last received will be lost,
not the first data in the buffer. This means that if four bytes are transferred, byte 1 first,
then byte 2, 3, and 4, and the UDRn is not read before all transfers are completed, then
byte 3 to be received will be lost, and not byte 1.

The following code examples show a simple USART in MSPIM mode transfer function
based on polling of the Data Register Empty (UDREN) Flag and the Receive Complete
(RXCn) Flag. The USART has to be initialized before the function can be used. For the
assembly code, the data to be sent is assumed to be stored in Register R16 and the
data received will be available in the same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREnN
Flag, before loading it with new data to be transmitted. The function then waits for data
to be present in the receive buffer by checking the RXCn Flag, before reading the buffer
and returning the value.

200 ATmega640/1280/1281/2560/2561 m————

2549K-AVR-01/07



| ATmega640/1 280/1281/2560/2561

Transmitter and Receiver
Flags and Interrupts

Disabling the Transmitter or
Receiver
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Assembly Code Example("

USART _MSPIM_Transfer:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART MSPIM Transfer
; Put data (rl6) into buffer, sends the data
out UDRn,rlé6
; Wait for data to be received
USART_MSPIM Wait_RXCn:
sbis UCSRnA, RXCn
rjmp USART MSPIM Wait_RXCn
; Get and return received data from buffer
in rl6, UDRn

ret

C Code Example"

unsigned char USART_Receive( void )
{
/* Wait for empty transmit buffer */
while ( ! ( UCSRnA & (1<<UDREn)) );
/* Put data into buffer, sends the data */
UDRn = data;
/* Wait for data to be received */
while ( ! (UCSRnA & (1<<RXCn)) );
/* Get and return received data from buffer */

return UDRn;

Note: 1. See “About Code Examples” on page 9.

The RXCn, TXCn, and UDREn flags and corresponding interrupts in USART in MSPIM
mode are identical in function to the normal USART operation. However, the receiver
error status flags (FE, DOR, and PE) are not in use and is always read as zero.

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in
function to the normal USART operation.
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USART MSPIM Register
Description

UDRn — USART MSPIM I/0
Data Register

UCSRnA — USART MSPIM
Control and Status Register n
A

ATMEL

The following section describes the registers used for SPI operation using the USART.

The function and bit description of the USART data register (UDRn) in MSPI mode is
identical to normal USART operation. See “UDRn — USART I/O Data Register n” on
page 227.

Bit 7 6 5 4 3 2 1 0

| rRxcn | TXCn | UDREn - - - - - | ucsrna
Read/Write R/W R/W R/W R R R R R
Initial Value 0 0 0 0 0 1 1 0

e Bit 7 - RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the
receive buffer is empty (i.e., does not contain any unread data). If the Receiver is dis-
abled, the receive buffer will be flushed and consequently the RXCn bit will become
zero. The RXCn Flag can be used to generate a Receive Complete interrupt (see
description of the RXCIEn bit).

¢ Bit 6 - TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted
out and there are no new data currently present in the transmit buffer (UDRn). The
TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed,
or it can be cleared by writing a one to its bit location. The TXCn Flag can generate a
Transmit Complete interrupt (see description of the TXCIEn bit).

e Bit 5 - UDREn: USART Data Register Empty

The UDREN Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If
UDRERN is one, the buffer is empty, and therefore ready to be written. The UDREnN Flag
can generate a Data Register Empty interrupt (see description of the UDRIE bit).
UDRER is set after a reset to indicate that the Transmitter is ready.

¢ Bit 4:0 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future
devices, these bits must be written to zero when UCSRNA is written.

22 ATmega640/1280/1281/2560/2561 m————

2549K-AVR-01/07



| ATmega640/1 280/1281/2560/2561

UCSRnB - USART MSPIM
Control and Status Register n
B

2549K-AVR-01/07

Bit 7 6 5 4 3 2 1 0

| RXCIEn | TXCIEn | UDRIE | RXENn | TXENn - - - ] UcsRnB
Read/Write R/W R/W R/W R/W R/W R R
Initial Value 0 0 0 0 0 1 1 0

¢ Bit 7 - RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete
interrupt will be generated only if the RXCIEn bit is written to one, the Global Interrupt
Flag in SREG is written to one and the RXCn bit in UCSRNA is set.

¢ Bit 6 - TXCIEn: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete
interrupt will be generated only if the TXCIEn bit is written to one, the Global Interrupt
Flag in SREG is written to one and the TXCn bit in UCSRNA is set.

e Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREnN Flag. A Data Register Empty
interrupt will be generated only if the UDRIE bit is written to one, the Global Interrupt
Flag in SREG is written to one and the UDREn bit in UCSRNA is set.

¢ Bit 4 - RXENNn: Receiver Enable

Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will
override normal port operation for the RxDn pin when enabled. Disabling the Receiver
will flush the receive buffer. Only enabling the receiver in MSPI mode (i.e. setting
RXENn=1 and TXENNn=0) has no meaning since it is the transmitter that controls the
transfer clock and since only master mode is supported.

¢ Bit 3 - TXENn: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override nor-
mal port operation for the TxDn pin when enabled. The disabling of the Transmitter
(writing TXENN to zero) will not become effective until ongoing and pending transmis-
sions are completed, i.e., when the Transmit Shift Register and Transmit Buffer Register
do not contain data to be transmitted. When disabled, the Transmitter will no longer
override the TxDn port.

¢ Bit 2:0 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future
devices, these bits must be written to zero when UCSRnNB is written.
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UCSRNC - USART MSPIM
Control and Status Register n
Cc

UBRRnL and UBRRnH -
USART MSPIM Baud Rate
Registers

ATMEL

Bit 7 6 5 4 3 2 1 0

| UMSELn1 | UMSELn0 | - | - | - | UDORDn | UCPHAn | UCPOLn | UCSRnC
Read/Write R/W R/W R R R R/W R/W R/W
Initial Value 0 0 0 0 0 1 1 0

* Bit 7:6 - UMSELN1:0: USART Mode Select

These bits select the mode of operation of the USART as shown in Table 115. See
“UCSRNC — USART Control and Status Register n C” on page 229 for full description of
the normal USART operation. The MSPIM is enabled when both UMSELn bits are set to
one. The UDORDnN, UCPHAN, and UCPOLnN can be set in the same write operation
where the MSPIM is enabled.

Table 115. UMSELRN Bits Settings

UMSELN1 UMSELNO Mode

0 0 Asynchronous USART
0 1 Synchronous USART
1 0 (Reserved)

1 1 Master SPI (MSPIM)

¢ Bit 5:3 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future
devices, these bits must be written to zero when UCSRNC is written.

¢ Bit 2 - UDORDNnN: Data Order

When set to one the LSB of the data word is transmitted first. When set to zero the MSB
of the data word is transmitted first. Refer to the Frame Formats section page 4 for
details.

¢ Bit1 - UCPHAnN: Clock Phase

The UCPHAn bit setting determine if data is sampled on the leasing edge (first) or tailing
(last) edge of XCKn. Refer to the SPI Data Modes and Timing section page 4 for details.

e Bit 0 - UCPOLN: Clock Polarity

The UCPOLnN bit sets the polarity of the XCKn clock. The combination of the UCPOLnN
and UCPHAn bit settings determine the timing of the data transfer. Refer to the SPI Data
Modes and Timing section page 4 for details.

The function and bit description of the baud rate registers in MSPI mode is identical to
normal USART operation. See “UBRRnL and UBRRnH — USART Baud Rate Registers”
on page 231.

Table 116. Comparison of USART in MSPIM mode and SPI pins.

USART_MSPIM SPI Comment
TxDn MOSI Master Out only
RxDn MISO Master In only
XCKn SCK (Functionally identical)
(N/A) Ss Not supported by USART in MSPIM
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2-wire Serial Interface

Features

Simple yet Powerful and Flexible Communication Interface, only two Bus Lines needed
Both Master and Slave Operation Supported

Device can Operate as Transmitter or Receiver

7-bit Address Space Allows up to 128 Different Slave Addresses

Multi-master Arbitration Support

Up to 400 kHz Data Transfer Speed

Slew-rate Limited Output Drivers

Noise Suppression Circuitry Rejects Spikes on Bus Lines

Fully Programmable Slave Address with General Call Support

Address Recognition Causes Wake-up When AVR is in Sleep Mode

2-wire Serial Interface The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications.
Bus Definition The TWI protocol allows the systems designer to interconnect up to 128 different
devices using only two bi-directional bus lines, one for clock (SCL) and one for data
(SDA). The only external hardware needed to implement the bus is a single pull-up
resistor for each of the TWI bus lines. All devices connected to the bus have individual
addresses, and mechanisms for resolving bus contention are inherent in the TWI

protocol.

Figure 90. TWI Bus Interconnection

SDA

cC

Device 1 Device 2 Device 3 | ........ Device n R1 R2
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\/
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A
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TWI Terminology The following definitions are frequently encountered in this section.

Table 117. TWI Terminology

Term

Description

Master

The device that initiates and terminates a transmission. The Master also
generates the SCL clock.

Slave

The device addressed by a Master.

Transmitter

The device placing data on the bus.

Receiver

The device reading data from the bus.

The Power Reduction TWI bit, PRTWI bit in “PRRO — Power Reduction Register 0” on
page 55 must be written to zero to enable the 2-wire Serial Interface.

2549K-AVR-01/07
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Electrical Interconnection

Data Transfer and Frame
Format

Transferring Bits

START and STOP Conditions

ATMEL

As depicted in Figure 90, both bus lines are connected to the positive supply voltage
through pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or
open-collector. This implements a wired-AND function which is essential to the opera-
tion of the interface. A low level on a TWI bus line is generated when one or more TWI
devices output a zero. A high level is output when all TWI devices trim-state their out-
puts, allowing the pull-up resistors to pull the line high. Note that all AVR devices
connected to the TWI bus must be powered in order to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus
capacitance limit of 400 pF and the 7-bit slave address space. A detailed specification of
the electrical characteristics of the TWI is given in “SPI Timing Characteristics” on page
380. Two different sets of specifications are presented there, one relevant for bus
speeds below 100 kHz, and one valid for bus speeds up to 400 kHz.

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line.
The level of the data line must be stable when the clock line is high. The only exception
to this rule is for generating start and stop conditions.

Figure 91. Data Validity

SDA

SCL

Data Stable Data Stable

Data Change

The Master initiates and terminates a data transmission. The transmission is initiated
when the Master issues a START condition on the bus, and it is terminated when the
Master issues a STOP condition. Between a START and a STOP condition, the bus is
considered busy, and no other master should try to seize control of the bus. A special
case occurs when a new START condition is issued between a START and STOP con-
dition. This is referred to as a REPEATED START condition, and is used when the
Master wishes to initiate a new transfer without relinquishing control of the bus. After a
REPEATED START, the bus is considered busy until the next STOP. This is identical to
the START behavior, and therefore START is used to describe both START and
REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the
SDA line when the SCL line is high.
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Address Packet Format
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Figure 92. START, REPEATED START and STOP conditions

START STOP START REPEATED START STOP

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address
bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is
set, a read operation is to be performed, otherwise a write operation should be per-
formed. When a Slave recognizes that it is being addressed, it should acknowledge by
pulling SDA low in the ninth SCL (ACK) cycle. If the addressed Slave is busy, or for
some other reason can not service the Master’s request, the SDA line should be left
high in the ACK clock cycle. The Master can then transmit a STOP condition, or a
REPEATED START condition to initiate a new transmission. An address packet consist-
ing of a slave address and a READ or a WRITE bit is called SLA+R or SLA+W,
respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allo-
cated by the designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in
the ACK cycle. A general call is used when a Master wishes to transmit the same mes-
sage to several slaves in the system. When the general call address followed by a Write
bit is transmitted on the bus, all slaves set up to acknowledge the general call will pull
the SDA line low in the ack cycle. The following data packets will then be received by all
the slaves that acknowledged the general call. Note that transmitting the general call
address followed by a Read bit is meaningless, as this would cause contention if several
slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 93. Address Packet Format

Addr MSB AddrLSB R/W ACK
i (
))
SDA
5
1 2 ) 7 8 9 -
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Data Packet Format

Combining Address and Data
Packets into a Transmission

ATMEL

All data packets transmitted on the TWI bus are nine bits long, consisting of one data
byte and an acknowledge bit. During a data transfer, the Master generates the clock and
the START and STOP conditions, while the Receiver is responsible for acknowledging
the reception. An Acknowledge (ACK) is signalled by the Receiver pulling the SDA line
low during the ninth SCL cycle. If the Receiver leaves the SDA line high, a NACK is sig-
nalled. When the Receiver has received the last byte, or for some reason cannot receive
any more bytes, it should inform the Transmitter by sending a NACK after the final byte.
The MSB of the data byte is transmitted first.

Figure 94. Data Packet Format

! Data MSB DatalLSB  ACK !

Aggregate i ) N
SDA | 3
I I

I | B
SDA from N |
Transmitter | ? 3
I I

——— ! [
SDA from /o 3 T}
Receiver /| !
I I
SCL from | |

Master ! { o
I I

| ! 2 7 8 ° | STOP, REPEATED
SLA+R/W ; Data Byte ; START or Next

Data Byte

A transmission basically consists of a START condition, a SLA+R/W, one or more data
packets and a STOP condition. An empty message, consisting of a START followed by
a STOP condition, is illegal. Note that the Wired-ANDing of the SCL line can be used to
implement handshaking between the Master and the Slave. The Slave can extend the
SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the
Master is too fast for the Slave, or the Slave needs extra time for processing between
the data transmissions. The Slave extending the SCL low period will not affect the SCL
high period, which is determined by the Master. As a consequence, the Slave can
reduce the TWI data transfer speed by prolonging the SCL duty cycle.

Figure 95 shows a typical data transmission. Note that several data bytes can be trans-
mitted between the SLA+R/W and the STOP condition, depending on the software
protocol implemented by the application software.

Figure 95. Typical Data Transmission

SDA

Addr MSB

NV AVAWYAVAVANE VAW ANYAWVAVANYARTE
, ——/ p —4—/ 1

START

AddrLSB R/W ACK Data MSB Data LSB ACK i

SLA+R/W Data Byte STOP
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Multi-master Bus
Systems, Arbitration and
Synchronization
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The TWI protocol allows bus systems with several masters. Special concerns have
been taken in order to ensure that transmissions will proceed as normal, even if two or
more masters initiate a transmission at the same time. Two problems arise in multi-mas-
ter systems:

¢ An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that
they have lost the selection process. This selection process is called arbitration.
When a contending master discovers that it has lost the arbitration process, it
should immediately switch to Slave mode to check whether it is being addressed by
the winning master. The fact that multiple masters have started transmission at the
same time should not be detectable to the slaves, i.e. the data being transferred on
the bus must not be corrupted.

» Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission
proceed in a lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial
clocks from all masters will be wired-ANDed, yielding a combined clock with a high
period equal to the one from the Master with the shortest high period. The low period of
the combined clock is equal to the low period of the Master with the longest low period.
Note that all masters listen to the SCL line, effectively starting to count their SCL high
and low time-out periods when the combined SCL line goes high or low, respectively.

Figure 96. SCL Synchronization Between Multiple Masters
\ TA

low high
! ! ! !
I I I I
! | | J
SCL from ! L)/ ! !
Master A | % | |
I I
I I
,,,,,, | |
SCL from | \ L/ | IS
Master B ! \ ! } } B
[ 1 I
! ! } } !
! o ‘ !
SCL Bus | W ! |
Line \ /| | |
[ 1 } ‘ I
I I I
| By, o TBhign |
\ Masters Start \ Masters Start
Counting Low Period Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after out-
putting data. If the value read from the SDA line does not match the value the Master
had output, it has lost the arbitration. Note that a Master can only lose arbitration when it
outputs a high SDA value while another Master outputs a low value. The losing Master
should immediately go to Slave mode, checking if it is being addressed by the winning
Master. The SDA line should be left high, but losing masters are allowed to generate a
clock signal until the end of the current data or address packet. Arbitration will continue
until only one Master remains, and this may take many bits. If several masters are trying
to address the same Slave, arbitration will continue into the data packet.
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Figure 97. Arbitration Between Two Masters

START Master A Loses
SDA f || \ rbitration, SDA,# SDA
rom

Master A || . _
|| \
|| \

SDA from
\

Master B \ / \ / \

Synchronized
|| |

Note that arbitration is not allowed between:

e A REPEATED START condition and a data bit.

e A STOP condition and a data bit.

¢ A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions

never occur. This implies that in multi-master systems, all data transfers must use the

same composition of SLA+R/W and data packets. In other words: All transmissions

must contain the same number of data packets, otherwise the result of the arbitration is
undefined.
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Overview of the TWI

Module

SCL and SDA Pins

Bit Rate Generator Unit
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The TWI module is comprised of several submodules, as shown in Figure 98. All regis-
ters drawn in a thick line are accessible through the AVR data bus.

Figure 98. Overview of the TWI Module
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Address Register
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A
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Control Unit

Address Comparator

Status Register
(TWSR)
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(TWCR)

State Machine and

Status control

TWI Unit

These pins interface the AVR TWI with the rest of the MCU system. The output drivers
contain a slew-rate limiter in order to conform to the TWI specification. The input stages
contain a spike suppression unit removing spikes shorter than 50 ns. Note that the inter-
nal pull-ups in the AVR pads can be enabled by setting the PORT bits corresponding to
the SCL and SDA pins, as explained in the I/O Port section. The internal pull-ups can in
some systems eliminate the need for external ones.

This unit controls the period of SCL when operating in a Master mode. The SCL period
is controlled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in
the TWI Status Register (TWSR). Slave operation does not depend on Bit Rate or Pres-
caler settings, but the CPU clock frequency in the Slave must be at least 16 times higher
than the SCL frequency. Note that slaves may prolong the SCL low period, thereby
reducing the average TWI bus clock period. The SCL frequency is generated according
to the following equation:
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Bus Interface Unit

Address Match Unit

Control Unit
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CPU Clock frequency

SCL frequency =
16+ 2(TWBR) - 473

¢ TWBR = Value of the TWI Bit Rate Register.
e TWPS = Value of the prescaler bits in the TWI Status Register.
Note:  Pull-up resistor values should be selected according to the SCL frequency and the

capacitive bus line load. See “2-wire Serial Interface Characteristics” on page 379 for
value of pull-up resistor.

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Con-
troller and Arbitration detection hardware. The TWDR contains the address or data
bytes to be transmitted, or the address or data bytes received. In addition to the 8-bit
TWDR, the Bus Interface Unit also contains a register containing the (N)ACK bit to be
transmitted or received. This (N)ACK Register is not directly accessible by the applica-
tion software. However, when receiving, it can be set or cleared by manipulating the
TWI Control Register (TWCR). When in Transmitter mode, the value of the received
(N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START,
REPEATED START, and STOP conditions. The START/STOP controller is able to
detect START and STOP conditions even when the AVR MCU is in one of the sleep
modes, enabling the MCU to wake up if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware
continuously monitors the transmission trying to determine if arbitration is in process. If
the TWI has lost an arbitration, the Control Unit is informed. Correct action can then be
taken and appropriate status codes generated.

The Address Match unit checks if received address bytes match the seven-bit address
in the TWI Address Register (TWAR). If the TWI General Call Recognition Enable
(TWGCE) bit in the TWAR is written to one, all incoming address bits will also be com-
pared against the General Call address. Upon an address match, the Control Unit is
informed, allowing correct action to be taken. The TWI may or may not acknowledge its
address, depending on settings in the TWCR. The Address Match unit is able to com-
pare addresses even when the AVR MCU is in sleep mode, enabling the MCU to wake
up if addressed by a Master. If another interrupt (e.g., INTO) occurs during TWI Power-
down address match and wakes up the CPU, the TWI aborts operation and return to it'’s
idle state. If this cause any problems, ensure that TWI Address Match is the only
enabled interrupt when entering Power-down.

The Control unit monitors the TWI bus and generates responses corresponding to set-
tings in the TWI Control Register (TWCR). When an event requiring the attention of the
application occurs on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the
next clock cycle, the TWI Status Register (TWSR) is updated with a status code identify-
ing the event. The TWSR only contains relevant status information when the TWI
Interrupt Flag is asserted. At all other times, the TWSR contains a special status code
indicating that no relevant status information is available. As long as the TWINT Flag is
set, the SCL line is held low. This allows the application software to complete its tasks
before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:
e After the TWI has transmitted a START/REPEATED START condition.
e  After the TWI has transmitted SLA+R/W.

252 ATmega640/1280/1281/2560/2561 m————
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Using the TWI

e After the TWI has transmitted an address byte.
e After the TWI has lost arbitration.

e After the TWI has been addressed by own slave address or general call.
e After the TWI has received a data byte.
e After a STOP or REPEATED START has been received while still addressed as a

Slave.

¢ When a bus error has occurred due to an illegal START or STOP condition.

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus
events, like reception of a byte or transmission of a START condition. Because the TWI
is interrupt-based, the application software is free to carry on other operations during a
TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in TWCR together with
the Global Interrupt Enable bit in SREG allow the application to decide whether or not
assertion of the TWINT Flag should generate an interrupt request. If the TWIE bit is
cleared, the application must poll the TWINT Flag in order to detect actions on the TWI

bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits appli-
cation response. In this case, the TWI Status Register (TWSR) contains a value
indicating the current state of the TWI bus. The application software can then decide
how the TWI should behave in the next TWI bus cycle by manipulating the TWCR and

TWDR Registers.

Figure 99 is a simple example of how the application can interface to the TWI hardware.
In this example, a Master wishes to transmit a single data byte to a Slave. This descrip-
tion is quite abstract, a more detailed explanation follows later in this section. A simple
code example implementing the desired behavior is also presented.

Figure 99. Interfacing the Application to the TWI in a Typical Transmission

1 Applicati 3. Check TWSR to see if START was 5. Check TWSR to see if SLA+W was 7 Check TWSR t it dat i
c writ. ?p‘:fzv?lggt sent. Application loads SLA+W into sent and ACK received. - whec nd ACoKs:ae : ivada was sen
L c esin?ti i 0 TWDR, and loads appropriate control Application loads data into TWDR, and Aoplicati anl d ec:e ?i -t ntrol
82 late signals into TWCR, makin sure that loads appropriate control signals into ppiication loads appropriate contro
= 0 transmission of pprop g signals to send STOP into TWCR
< TWINT is written to one, TWCR, making sure that TWINT is ; ) ) ’
< START and TWSTA is written to zero written to one making sure that TWINT is written to one
\ l l
TWI bus | START SLA+W A Data STOP ‘
Indicates
_5 s 2. TWINT set. Statté T;’;’L':Tinsdﬁgates 6. TWINT set. . TWINT set
E ; = Status code indicates SLA+W sent. ACK Status code indicates
K < | START condition sent receive(l.l data sent, ACK received
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1. The first step in a TWI transmission is to transmit a START condition. This is
done by writing a specific value into TWCR, instructing the TWI hardware to
transmit a START condition. Which value to write is described later on. However,
it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the
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TWINT bit in TWCR is set. Immediately after the application has cleared TWINT,
the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is
set, and TWSR is updated with a status code indicating that the START condition
has successfully been sent.

3. The application software should now examine the value of TWSR, to make sure
that the START condition was successfully transmitted. If TWSR indicates other-
wise, the application software might take some special action, like calling an
error routine. Assuming that the status code is as expected, the application must
load SLA+W into TWDR. Remember that TWDR is used both for address and
data. After TWDR has been loaded with the desired SLA+W, a specific value
must be written to TWCR, instructing the TWI hardware to transmit the SLA+W
present in TWDR. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT
clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will
initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set,
and TWSR is updated with a status code indicating that the address packet has
successfully been sent. The status code will also reflect whether a Slave
acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure
that the address packet was successfully transmitted, and that the value of the
ACK bit was as expected. If TWSR indicates otherwise, the application software
might take some special action, like calling an error routine. Assuming that the
status code is as expected, the application must load a data packet into TWDR.
Subsequently, a specific value must be written to TWCR, instructing the TWI
hardware to transmit the data packet present in TWDR. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any opera-
tion as long as the TWINT bit in TWCR is set. Inmediately after the application
has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set,
and TWSR is updated with a status code indicating that the data packet has suc-
cessfully been sent. The status code will also reflect whether a Slave
acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure
that the data packet was successfully transmitted, and that the value of the ACK
bit was as expected. If TWSR indicates otherwise, the application software might
take some special action, like calling an error routine. Assuming that the status
code is as expected, the application must write a specific value to TWCR,
instructing the TWI hardware to transmit a STOP condition. Which value to write
is described later on. However, it is important that the TWINT bit is set in the
value written. Writing a one to TWINT clears the flag. The TWI will not start any
operation as long as the TWINT bit in TWCR is set. Inmediately after the appli-
cation has cleared TWINT, the TWI will initiate transmission of the STOP
condition. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmis-
sions. These can be summarized as follows:

¢ When the TWI has finished an operation and expects application response, the
TWINT Flag is set. The SCL line is pulled low until TWINT is cleared.
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*  When the TWINT Flag is set, the user must update all TWI Registers with the value
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the
value to be transmitted in the next bus cycle.

e After all TWI Register updates and other pending application software tasks have
been completed, TWCR is written. When writing TWCR, the TWINT bit should be
set. Writing a one to TWINT clears the flag. The TWI will then commence executing
whatever operation was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that
the code below assumes that several definitions have been made, for example by using

include-files.
Assembly Code Example C Example Comments
1 1di  rl6, (1<<TWINT) | (1<<TWSTA) | TWCR = (1<<TWINT) | (1<<TWSTA) | Send START condition
(1<<TWEN) (1<<TWEN)

out TWCR, rlé6

2 waitl: while (!(TWCR & (1<<TWINT))) Wait for TWINT Flag set. This
in rl6, TWCR ; indicates that the START condition
sbrs rl6, TWINT has been transmitted
rjmp waitl

3 in rl6, TWSR if ((TWSR & OxF8) != START) Check value of TWI Status
andi rl6, OxF8 ERROR () ; Register. Mask prescaler bits. If
cpi rl6, START status different from START go to
brne ERROR ERROR
lal  rile, SLAW TWDR = SLA_W; Load SLA_W into TWDR Register.
out TWDR, rl6 TWCR = (1<<TWINT) | (1<<TWEN) ; Clear TWINT bit in TWCR to start
1di 116, (1<<TWINT) | (1<<TWEN) transmission of address
out TWCR, rlé6

4 wait2: while (!(TWCR & (1<<TWINT))) Wait for TWINT Flag set. This
in r16, TWCR ; indicates that the SLA+W has been
sbrs rl6, TWINT transmitted, and ACK/NACK has
rimp wait2 been received.

5 in r16, TWSR if ((TWSR & OxF8) != MT_SLA_ACK) Check value of TWI Status
andi rl6, OxF8 ERROR () ; Register. Mask prescaler bits. If
epi rl6, MT SLA_ACK status different from MT_SLA_ACK
brne ERROR g0 to ERROR
1di  rl6, DATA TWDR = DATA; Load DATA into TWDR Register.
out TWDR, rl6 TWCR = (1<<TWINT) | (1<<TWEN); Clear TWINT bit in TWCR to start
1di 116, (1<<TWINT) | (1<<TWEN) transmission of data
out TWCR, rlé6

6 wait3: while (!(TWCR & (1<<TWINT))) Wait for TWINT Flag set. This
in rl6, TWCR ; indicates that the DATA has been
sbrs rl6, TWINT transmitted, and ACK/NACK has
rimp wait3 been received.

7 in rl6, TWSR if ((TWSR & OxF8) != MT_DATA_ACK) Check value of TWI Status
andi rl6, OxF8 ERROR () ; Register. Mask prescaler bits. If
cpi rl6, MT_DATA_ACK status different from
brne ERROR MT_DATA_ACK go to ERROR
1di rl6, (1<<TWINT) | (1<<TWEN) | TWCR = (1<<TWINT) | (1<<TWEN) | Transmit STOP condition

(1<<TWSTO) (1<<TWSTO) ;

out TWCR, rl6
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Transmission Modes

Master Transmitter Mode
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The TWI can operate in one of four major modes. These are named Master Transmitter
(MT), Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several
of these modes can be used in the same application. As an example, the TWI can use
MT mode to write data into a TWI EEPROM, MR mode to read the data back from the
EEPROM. If other masters are present in the system, some of these might transmit data
to the TWI, and then SR mode would be used. It is the application software that decides
which modes are legal.

The following sections describe each of these modes. Possible status codes are
described along with figures detailing data transmission in each of the modes. These fig-
ures contain the following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)
Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 101 to Figure 107, circles are used to indicate that the TWINT Flag is set. The
numbers in the circles show the status code held in TWSR, with the prescaler bits
masked to zero. At these points, actions must be taken by the application to continue or
complete the TWI transfer. The TWI transfer is suspended until the TWINT Flag is
cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appro-
priate software action. For each status code, the required software action and details of
the following serial transfer are given in Table 118 to Table 121. Note that the prescaler
bits are masked to zero in these tables.

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave
Receiver (see Figure 100). In order to enter a Master mode, a START condition must be
transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.
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Figure 100. Data Transfer in Master Transmitter Mode
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A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one
to transmit a START condition and TWINT must be written to one to clear the TWINT
Flag. The TWI will then test the 2-wire Serial Bus and generate a START condition as
soon as the bus becomes free. After a START condition has been transmitted, the
TWINT Flag is set by hardware, and the status code in TWSR will be 0x08 (see Table
118). In order to enter MT mode, SLA+W must be transmitted. This is done by writing
SLA+W to TWDR. Thereafter the TWINT bit should be cleared (by writing it to one) to
continue the transfer. This is accomplished by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+W have been transmitted and an acknowledgement bit has been received,
TWINT is set again and a number of status codes in TWSR are possible. Possible sta-
tus codes in Master mode are 0x18, 0x20, or 0x38. The appropriate action to be taken
for each of these status codes is detailed in Table 118.

When SLA+W has been successfully transmitted, a data packet should be transmitted.
This is done by writing the data byte to TWDR. TWDR must only be written when
TWINT is high. If not, the access will be discarded, and the Write Collision bit (TWWC)
will be set in the TWCR Register. After updating TWDR, the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the
following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

This scheme is repeated until the last byte has been sent and the transfer is ended by
generating a STOP condition or a repeated START condition. A STOP condition is gen-
erated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X
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After a repeated START condition (state 0x10) the 2-wire Serial Interface can access
the same Slave again, or a new Slave without transmitting a STOP condition. Repeated
START enables the Master to switch between Slaves, Master Transmitter mode and
Master Receiver mode without losing control of the bus.

Table 118. Status codes for Master Transmitter Mode

Status Code

Application Software Response

(TWSR) Status of the 2-wire Serial Bus Tolfrom TWDR To TWCR
Prescaler Bits and 2-wire Serial Interface Hard-
are 0 ware STA STO TWINT | TWEA | Next Action Taken by TWI Hardware
0x08 A START condition has been | Load SLA+W 0 0 1 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+W or 0 0 1 X SLA+W will be transmitted;
has been transmitted ACK or NOT ACK will be received
Load SLA+R 0 0 1 X SLA+R will be transmitted;
Logic will switch to Master Receiver mode
0x18 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK wiill
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x20 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x28 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x30 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x38 Arbitration lost in SLA+W or data | No TWDR action or 0 0 1 X 2-wire Serial Bus will be released and not addressed
bytes Slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus be-
comes free
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Figure 101. Formats and States in the Master Transmitter Mode
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In the Master Receiver mode, a number of data bytes are received from a Slave Trans-
mitter (Slave see Figure 102). In order to enter a Master mode, a START condition must
be transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.
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Figure 102. Data Transfer in Master Receiver Mode
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A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be
written to one to transmit a START condition and TWINT must be set to clear the TWINT
Flag. The TWI will then test the 2-wire Serial Bus and generate a START condition as
soon as the bus becomes free. After a START condition has been transmitted, the
TWINT Flag is set by hardware, and the status code in TWSR will be 0x08 (See Table
118). In order to enter MR mode, SLA+R must be transmitted. This is done by writing
SLA+R to TWDR. Thereafter the TWINT bit should be cleared (by writing it to one) to
continue the transfer. This is accomplished by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgement bit has been received,
TWINT is set again and a number of status codes in TWSR are possible. Possible sta-
tus codes in Master mode are 0x38, 0x40, or 0x48. The appropriate action to be taken
for each of these status codes is detailed in Table 119. Received data can be read from
the TWDR Register when the TWINT Flag is set high by hardware. This scheme is
repeated until the last byte has been received. After the last byte has been received, the
MR should inform the ST by sending a NACK after the last received data byte. The
transfer is ended by generating a STOP condition or a repeated START condition. A
STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access
the same Slave again, or a new Slave without transmitting a STOP condition. Repeated
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START enables the Master to switch between Slaves, Master Transmitter mode and
Master Receiver mode without losing control over the bus.

Table 119. Status codes for Master Receiver Mode

Status Code Application Software Response
(TWSR) Status of the 2-wire Serial Bus To TWCR
Prescaler Bits and 2-wire Serial Interface Hard- | 1o0m TWDR
are 0 ware STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware
0x08 A START condition has been | Load SLA+R 0 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+R or 0 0 1 X SLA+R will be transmitted
has been transmitted ACK or NOT ACK will be received
Load SLA+W 0 0 1 X SLA+W will be transmitted
Logic will switch to Master Transmitter mode
0x38 Arbitration lost in SLA+R or NOT | No TWDR action or 0 0 1 X 2-wire Serial Bus will be released and not addressed
ACK bit Slave mode will be entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
0x40 SLA+R has been transmitted; No TWDR action or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
No TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
0x48 SLA+R has been transmitted; No TWDR action or 1 0 1 X Repeated START will be transmitted
NOT ACK has been received No TWDR action or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 0 1 1 Data byte will be received and ACK will be returned
0x58 Data byte has been received; Read data byte or 1 0 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

2549K-AVR-01/07

ATMEL

261




Slave Receiver Mode

262

ATMEL

Figure 103. Formats and States in the Master Receiver Mode
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In the Slave Receiver mode, a number of data bytes are received from a Master Trans-
mitter (see Figure 104). All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

Figure 104. Data transfer in Slave Receiver mode
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To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR
value

TWA6 | TWAS \ TWA4 \ TWA3 | TWA2 | TWA1 \ TWAO TWGCE

Device's Own Slave Address
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The upper 7 bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgement of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode
is entered. After its own slave address and the write bit have been received, the TWINT
Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 120. The Slave Receiver mode may also be entered if
arbitration is lost while the TWI is in the Master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“17)
to SDA after the next received data byte. This can be used to indicate that the Slave is
not able to receive any more bytes. While TWEA is zero, the TWI does not acknowledge
its own slave address. However, the 2-wire Serial Bus is still monitored and address rec-
ognition may resume at any time by setting TWEA. This implies that the TWEA bit may
be used to temporarily isolate the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the
TWEA bit is set, the interface can still acknowledge its own slave address or the general
call address by using the 2-wire Serial Bus clock as a clock source. The part will then
wake up from sleep and the TWI will hold the SCL clock low during the wake up and
until the TWINT Flag is cleared (by writing it to one). Further data reception will be car-
ried out as normal, with the AVR clocks running as normal. Observe that if the AVR is
set up with a long start-up time, the SCL line may be held low for a long time, blocking
other data transmissions.

Note that the 2-wire Serial Interface Data Register —- TWDR does not reflect the last byte
present on the bus when waking up from these Sleep modes.
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Table 120. Status Codes for Slave Receiver Mode
Status Code Application Software Response
(TWSR) Status of the 2-wire Serial Bus and To TWCR
Prescaler Bits 2-wire Serial Interface Hardware Tolfrom TWDR
are 0 STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware
0x60 Own SLA+W has been received; No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
No TWDR action X 0 Data byte will be received and ACK will be returned
0x68 Arbitration lost in SLA+R/W as | No TWDR action or X 0 Data byte will be received and NOT ACK will be
Master; own SLA+W has been returned
received; ACK has been returned | No TWDR action X 0 Data byte will be received and ACK will be returned
0x70 General call address has been No TWDR action or X 0 Data byte will be received and NOT ACK will be
received; ACK has been returned returned
No TWDR action X 0 Data byte will be received and ACK will be returned
0x78 Arbitration lost in SLA+R/W as | No TWDR action or X 0 Data byte will be received and NOT ACK will be
Master; General call address has returned
been received; ACK has been No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
returned
0x80 Previously addressed with own | Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
SLA+W; data has been received; returned
ACK has been returned Read data byte 0 Data byte will be received and ACK will be returned
0x88 Previously addressed with own | Read data byte or 0 0 Switched to the not addressed Slave mode;
SLA+W; data has been received; no recognition of own SLA or GCA
NOT ACK has been returned Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA,;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized,;
GCA will be recognized if TWGCE = “1";
a START condition will be transmitted when the bus
becomes free
0x90 Previously addressed with Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
general call; data has been re- returned
ceived; ACK has been returned Read data byte 0 Data byte will be received and ACK will be returned
0x98 Previously addressed with Read data byte or 0 0 Switched to the not addressed Slave mode;
general call; data has been no recognition of own SLA or GCA
received; NOT ACK has been Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
returned own SLA will be recognized;
GCA will be recognized if TWGCE = “1"
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA,;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1%;
a START condition will be transmitted when the bus
becomes free
0xAO0 A STOP condition or repeated | No action 0 0 1 0 Switched to the not addressed Slave mode;
START condition has been no recognition of own SLA or GCA
received while still addressed as 0 0 1 1 Switched to the not addressed Slave mode;
Slave own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA,;
a START condition will be transmitted when the bus
becomes free
1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
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Figure 105. Formats and States in the Slave Receiver Mode
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This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero
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In the Slave Transmitter mode, a number of data bytes are transmitted to a Master
Receiver (see Figure 106). All the status codes mentioned in this section assume that
the prescaler bits are zero or are masked to zero.

Figure 106. Data Transfer in Slave Transmitter Mode
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To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR TWAG | TWAS \ TWA4 \ TWA3 | TWA2 | TWA1 \ TWAO TWGCE
value Device’'s Own Slave Address

The upper seven bits are the address to which the 2-wire Serial Interface will respond
when addressed by a Master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgement of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode
is entered. After its own slave address and the write bit have been received, the TWINT
Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 121. The Slave Transmitter mode may also be entered if
arbitration is lost while the TWI is in the Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of
the transfer. State 0xCO or state 0xC8 will be entered, depending on whether the Master
Receiver transmits a NACK or ACK after the final byte. The TWI is switched to the not
addressed Slave mode, and will ignore the Master if it continues the transfer. Thus the
Master Receiver receives all “1” as serial data. State 0xC8 is entered if the Master
demands additional data bytes (by transmitting ACK), even though the Slave has trans-
mitted the last byte (TWEA zero and expecting NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the
2-wire Serial Bus is still monitored and address recognition may resume at any time by
setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the
TWI from the 2-wire Serial Bus.
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In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the
TWEA bit is set, the interface can still acknowledge its own slave address or the general
call address by using the 2-wire Serial Bus clock as a clock source. The part will then
wake up from sleep and the TWI will hold the SCL clock will low during the wake up and
until the TWINT Flag is cleared (by writing it to one). Further data transmission will be
carried out as normal, with the AVR clocks running as normal. Observe that if the AVR is
set up with a long start-up time, the SCL line may be held low for a long time, blocking

other data transmissions.

Note that the 2-wire Serial Interface Data Register - TWDR does not reflect the last byte
present on the bus when waking up from these sleep modes.

Table 121. Status Codes for Slave Transmitter Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus and
2-wire Serial Interface Hardware

Application Software Response

To/from TWDR

To TWCR

STA

STO

TWINT

TWEA

Next Action Taken by TWI Hardware

0xA8 Own SLA+R has been received,;

ACK has been returned

Load data byte or

Load data byte

0

0

1

1

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xBO Arbitration lost in SLA+R/W as
Master; own SLA+R has been

received; ACK has been returned

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xB8 Data byte in TWDR has been
transmitted; ACK has been

received

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xCO Data byte in TWDR has been
transmitted; NOT ACK has been

received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1"

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA,;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1%;

a START condition will be transmitted when the bus
becomes free

0xC8 Last data byte in TWDR has been
transmitted (TWEA = “0"); ACK

has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA,;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1";

a START condition will be transmitted when the bus
becomes free
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Table 122.

Miscellaneous States
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Figure 107. Formats and States in the Slave Transmitter Mode
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There are two status codes that do not correspond to a defined TWI state, see Table
122.

Status OxF8 indicates that no relevant information is available because the TWINT Flag
is not set. This occurs between other states, and when the TWI is not involved in a serial
transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer.
A bus error occurs when a START or STOP condition occurs at an illegal position in the
format frame. Examples of such illegal positions are during the serial transfer of an
address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT is
set. To recover from a bus error, the TWSTO Flag must set and TWINT must be cleared
by writing a logic one to it. This causes the TWI to enter the not addressed Slave mode
and to clear the TWSTO Flag (no other bits in TWCR are affected). The SDA and SCL
lines are released, and no STOP condition is transmitted.

Status Code
(TWSR)
Prescaler Bits
are 0

ware

Status c_)f the _2—wire Serial Bus To TWCR
and 2-wire Serial Interface Hard- Tolfrom TWDR

Application Software Response

STA | STO | TWINT ‘ TWEA | Next Action Taken by TWI Hardware

0xF8 No relevant state information | No TWDR action No TWCR action Wait or proceed current transfer
available; TWINT = “0”
0x00 Bus error due to an illegal | No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-

START or STOP condition

tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.
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Combining Several TWI
Modes

Multi-master Systems
and Arbitration

2549K-AVR-01/07

In some cases, several TWI modes must be combined in order to complete the desired
action. Consider for example reading data from a serial EEPROM. Typically, such a
transfer involves the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.
3. The reading must be performed.

4. The transfer must be finished.

Note that data is transmitted both from Master to Slave and vice versa. The Master must
instruct the Slave what location it wants to read, requiring the use of the MT mode. Sub-
sequently, data must be read from the Slave, implying the use of the MR mode. Thus,
the transfer direction must be changed. The Master must keep control of the bus during
all these steps, and the steps should be carried out as an atomical operation. If this prin-
ciple is violated in a multimaster system, another Master can alter the data pointer in the
EEPROM between steps 2 and 3, and the Master will read the wrong data location.
Such a change in transfer direction is accomplished by transmitting a REPEATED
START between the transmission of the address byte and reception of the data. After a
REPEATED START, the Master keeps ownership of the bus. The following figure shows
the flow in this transfer.

Figure 108. Combining Several TWI Modes to Access a Serial EEPROM
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If multiple masters are connected to the same bus, transmissions may be initiated simul-
taneously by one or more of them. The TWI standard ensures that such situations are
handled in such a way that one of the masters will be allowed to proceed with the trans-
fer, and that no data will be lost in the process. An example of an arbitration situation is
depicted below, where two masters are trying to transmit data to a Slave Receiver.

Figure 109. An Arbitration Example
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Several different scenarios may arise during arbitration, as described below:
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Two or more masters are performing identical communication with the same Slave.
In this case, neither the Slave nor any of the masters will know about the bus
contention.

Two or more masters are accessing the same Slave with different data or direction
bit. In this case, arbitration will occur, either in the READ/WRITE bit or in the data
bits. The masters trying to output a one on SDA while another Master outputs a zero
will lose the arbitration. Losing masters will switch to not addressed Slave mode or
wait until the bus is free and transmit a new START condition, depending on
application software action.

Two or more masters are accessing different slaves. In this case, arbitration will
occur in the SLA bits. Masters trying to output a one on SDA while another Master
outputs a zero will lose the arbitration. Masters losing arbitration in SLA will switch to
Slave mode to check if they are being addressed by the winning Master. If
addressed, they will switch to SR or ST mode, depending on the value of the
READ/WRITE bit. If they are not being addressed, they will switch to not addressed
Slave mode or wait until the bus is free and transmit a new START condition,
depending on application software action.

This is summarized in Figure 110. Possible status values are given in circles.

Figure 110. Possible Status Codes Caused by Arbitration

START SLA Data STOP

Arbitration lost in SLA Arbitration lost in Data

Own No 38 ‘WI bus will be released and not addressed slave mode will be entered

Address / G_eneral Call '\LSTART condition will be transmitted when the bus becomes free
received

Yes

Write @% | Data byte will be received and NOT ACK will be returned

Direction '@a byte will be received and ACK will be returned

Read JGst data byte will be transmitted and NOT ACK should be received
@@'@a byte will be transmitted and ACK should be received
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Register Description

TWBR - TWI Bit Rate Register

TWCR - TWI Control Register
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Bit 7 6 5 4 3 2 1 0
(0xB8) I TWBR7 | TWBR6 | TWBR5 [ TWBR4 | TWBR3 | TWBR2 | TWBR1 | TWBRO I TWBR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:0 — TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a
frequency divider which generates the SCL clock frequency in the Master modes. See
“Bit Rate Generator Unit” on page 251 for calculating bit rates.

Bit 7 6 5 4 3 2 1 0

(0xBC) I TWINT TWEA TWSTA | TWSTO TWWC TWEN - TWIE I TWCR
Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to
initiate a Master access by applying a START condition to the bus, to generate a
Receiver acknowledge, to generate a stop condition, and to control halting of the bus
while the data to be written to the bus are written to the TWDR. It also indicates a write
collision if data is attempted written to TWDR while the register is inaccessible.

e Bit 7 - TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects appli-
cation software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will
jump to the TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is
stretched. The TWINT Flag must be cleared by software by writing a logic one to it. Note
that this flag is not automatically cleared by hardware when executing the interrupt rou-
tine. Also note that clearing this flag starts the operation of the TWI, so all accesses to
the TWI Address Register (TWAR), TWI Status Register (TWSR), and TWI Data Regis-
ter (TWDR) must be complete before clearing this flag.

e Bit 6 — TWEA: TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is writ-
ten to one, the ACK pulse is generated on the TWI bus if the following conditions are
met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire

Serial Bus temporarily. Address recognition can then be resumed by writing the TWEA
bit to one again.

* Bit 5 - TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the
2-wire Serial Bus. The TWI hardware checks if the bus is available, and generates a
START condition on the bus if it is free. However, if the bus is not free, the TWI waits

A IIIEI% 271
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until a STOP condition is detected, and then generates a new START condition to claim
the bus Master status. TWSTA must be cleared by software when the START condition
has been transmitted.

* Bit4 - TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-
wire Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is
cleared automatically. In Slave mode, setting the TWSTO bit can be used to recover
from an error condition. This will not generate a STOP condition, but the TWI returns to
a well-defined unaddressed Slave mode and releases the SCL and SDA lines to a high
impedance state.

e Bit3 - TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register - TWDR when
TWINT is low. This flag is cleared by writing the TWDR Register when TWINT is high.

e Bit 2 - TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is
written to one, the TWI takes control over the I/O pins connected to the SCL and SDA
pins, enabling the slew-rate limiters and spike filters. If this bit is written to zero, the TWI
is switched off and all TWI transmissions are terminated, regardless of any ongoing
operation.

¢ Bit 1 — Res: Reserved Bit

This bit is a reserved bit and will always read as zero.

¢ Bit 0 — TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will
be activated for as long as the TWINT Flag is high.

Bit 7 6 5 4 3 2 1 0

(0xB9) | TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 | TWPSO I TWSR
Read/Write R R R R R R R/IW RIW

Initial Value 1 1 1 1 1 0 0 0

e Bits 7:3 — TWS: TWI Status

These 5 bits reflect the status of the TWI logic and the 2-wire Serial Bus. The different
status codes are described later in this section. Note that the value read from TWSR
contains both the 5-bit status value and the 2-bit prescaler value. The application
designer should mask the prescaler bits to zero when checking the Status bits. This
makes status checking independent of prescaler setting. This approach is used in this
datasheet, unless otherwise noted.

¢ Bit 2 — Res: Reserved Bit

This bit is reserved and will always read as zero.
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TWDR - TWI Data Register

TWAR - TWI (Slave) Address
Register
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¢ Bits 1:0 - TWPS: TWI Prescaler Bits

These bits can be read and written, and control the bit rate prescaler.

Table 123. TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value
0 0 1

0 1 4

1 0 16

1 1 64

To calculate bit rates, see “Bit Rate Generator Unit” on page 251. The value of
TWPS1:0 is used in the equation.

Bit 7 6 5 4 3 2 1 0

(0xBB) I TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWDO I TWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the
TWDR contains the last byte received. It is writable while the TWI is not in the process of
shifting a byte. This occurs when the TWI Interrupt Flag (TWINT) is set by hardware.
Note that the Data Register cannot be initialized by the user before the first interrupt
occurs. The data in TWDR remains stable as long as TWINT is set. While data is shifted
out, data on the bus is simultaneously shifted in. TWDR always contains the last byte
present on the bus, except after a wake up from a sleep mode by the TWI interrupt. In
this case, the contents of TWDR is undefined. In the case of a lost bus arbitration, no
data is lost in the transition from Master to Slave. Handling of the ACK bit is controlled
automatically by the TWI logic, the CPU cannot access the ACK bit directly.

¢ Bits 7:0 - TWD: TWI Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte
received on the 2-wire Serial Bus.

Bit 7 6 5 4 3 2 1 0

(OxBA) | TWA6 TWA5 TWA4 TWA3 TWA2 TWAL TWAO TWGCE I TWAR
Read/Write R/W R/W R/W R/IW R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant
bits of TWAR) to which the TWI will respond when programmed as a Slave Transmitter
or Receiver, and not needed in the Master modes. In multimaster systems, TWAR must
be set in masters which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00).
There is an associated address comparator that looks for the slave address (or general
call address if enabled) in the received serial address. If a match is found, an interrupt
request is generated.

e Bits 7:1 — TWA: TWI (Slave) Address Register

These seven bits constitute the slave address of the TWI unit.
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Address Mask Register

ATMEL

* Bit 0 - TWGCE: TWI General Call Recognition Enable Bit

If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

Bit 7 6 5 4 3 2 1 0

(0xBD) | TWAM[6:0] - | TWAMR
Read/Write RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bits 7:1 —- TWAM: TWI Address Mask

The TWAMR can be loaded with a 7-bit Slave Address mask. Each of the bits in
TWAMR can mask (disable) the corresponding address bit in the TWI Address Register
(TWAR). If the mask bit is set to one then the address match logic ignores the compare
between the incoming address bit and the corresponding bit in TWAR. Figure 111
shows the address match logic in detail.

Figure 111. TWI| Address Match Logic, Block Diagram
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¢ Bit 0 — Res: Reserved Bit

This bit is reserved and will always read as zero.
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AC - Analog Comparator
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The Analog Comparator compares the input values on the positive pin AINO and nega-
tive pin AIN1. When the voltage on the positive pin AINO is higher than the voltage on
the negative pin AIN1, the Analog Comparator output, ACO, is set. The comparator’s
output can be set to trigger the Timer/Counter1 Input Capture function. In addition, the
comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The
user can select Interrupt triggering on comparator output rise, fall or toggle. A block dia-
gram of the comparator and its surrounding logic is shown in Figure 112.

The Power Reduction ADC bit, PRADC, in “PRRO — Power Reduction Register 0” on
page 55 must be disabled by writing a logical zero to be able to use the ADC input MUX.

Figure 112. Analog Comparator Block Diagram®
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Notes: 1. See Table 124 on page 276.
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2. Refer to Figure 1 on page 2 and Table 41 on page 92 for Analog Comparator pin

placement.

ATMEL
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Analog Comparator
Multiplexed Input
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It is possible to select any of the ADC15:0 pins to replace the negative input to the Ana-
log Comparator. The ADC multiplexer is used to select this input, and consequently, the

ADC must be switched off to utilize this feature. If the Analog Comparator Multiplexer
Enable bit (ACME in ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is
zero), MUX5 and MUX2:0 in ADMUX select the input pin to replace the negative input to
the Analog Comparator, as shown in Table 124. If ACME is cleared or ADEN is set,
AIN1 is applied to the negative input to the Analog Comparator.

Table 124. Analog Comparator Mulitiplexed Input

ACME ADEN MUX5 MUX2:0 Analog Comparator Negative Input

0 X X XXX AIN1

1 1 X XXX AIN1

1 0 0 000 ADCO

1 0 0 001 ADC1

1 0 0 010 ADC2

1 0 0 011 ADC3

1 0 0 100 ADC4

1 0 0 101 ADC5

1 0 0 110 ADC6

1 0 0 111 ADC7

1 0 1 000 ADCS8

1 0 1 001 ADC9

1 0 1 010 ADC10
1 0 1 011 ADC11
1 0 1 100 ADC12
1 0 1 101 ADC13
1 0 1 110 ADC14
1 0 1 111 ADC15

ATmega640/1280/1281/2560/2561 m———
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Register Description

ADCSRB - ADC Control and
Status Register B

ACSR - Analog Comparator
Control and Status Register
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Bit 7 6 5 4 3 2 1 0
(0x7B) I = ACME = = MUX5 ADTS2 ADTS1 ADTSO I ADCSRB
Read/Write R R/W R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 6 — ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is
zero), the ADC multiplexer selects the negative input to the Analog Comparator. When
this bit is written logic zero, AIN1 is applied to the negative input of the Analog Compar-
ator. For a detailed description of this bit, see “Analog Comparator Multiplexed Input” on
page 276.

Bit 7 6 5 4 3 2 1 0

0x30 (0x50) I ACD ACBG ACO ACI ACIE ACIC ACIS1 ACISO I ACSR
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0

e Bit 7 — ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off.
This bit can be set at any time to turn off the Analog Comparator. This will reduce power
consumption in Active and Idle mode. When changing the ACD bit, the Analog Compar-
ator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt
can occur when the bit is changed.

e Bit 6 — ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the
Analog Comparator. When this bit is cleared, AINO is applied to the positive input of the
Analog Comparator. When the bandgap reference is used as input to the Analog Com-
parator, it will take a certain time for the voltage to stabilize. If not stabilized, the first
conversion may give a wrong value. See “Internal Voltage Reference” on page 61.

e Bit 5 - ACO: Analog Comparator Output

The output of the Analog Comparator is synchronized and then directly connected to
ACO. The synchronization introduces a delay of 1 - 2 clock cycles.

¢ Bit 4 — ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode
defined by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if
the ACIE bit is set and the I-bit in SREG is set. ACl is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, ACl is cleared by writing a
logic one to the flag.

¢ Bit 3 — ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Ana-
log Comparator interrupt is activated. When written logic zero, the interrupt is disabled.
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DIDR1 - Digital Input Disable
Register 1
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e Bit 2 — ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to
be triggered by the Analog Comparator. The comparator output is in this case directly
connected to the input capture front-end logic, making the comparator utilize the noise
canceler and edge select features of the Timer/Counter1 Input Capture interrupt. When
written logic zero, no connection between the Analog Comparator and the input capture
function exists. To make the comparator trigger the Timer/Counter1 Input Capture inter-
rupt, the ICIE1 bit in the Timer Interrupt Mask Register (TIMSK1) must be set.

e Bits 1,0 — ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator inter-
rupt. The different settings are shown in Table 125.

Table 125. ACIS1/ACISO Settings

ACIS1 ACISO Interrupt Mode
0 0 Comparator Interrupt on Output Toggle.
0 1 Reserved
1 0 Comparator Interrupt on Falling Output Edge.
1 1 Comparator Interrupt on Rising Output Edge.

When changing the ACIS1/ACISO0 bits, the Analog Comparator Interrupt must be dis-
abled by clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt
can occur when the bits are changed.

Bit 7 6 5 4 3 2 1 0
(0X7F) | - = = = = AINID | AINoD | DIDR1
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit1, 0 - AIN1D, AINOD: AIN1, AINO Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled.
The corresponding PIN Register bit will always read as zero when this bit is set. When
an analog signal is applied to the AIN1/0 pin and the digital input from this pin is not
needed, this bit should be written logic one to reduce power consumption in the digital
input buffer.
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ADC - Analog to Digital Converter

Features

2549K-AVR-01/07

10-bit Resolution

1 LSB Integral Non-linearity

+ 2 LSB Absolute Accuracy

13 - 260 ps Conversion Time

Up to 76.9 kSPS (Up to 15 kSPS at Maximum Resolution)
16 Multiplexed Single Ended Input Channels

14 Differential input channels

4 Differential Input Channels with Optional Gain of 10x and 200x
Optional Left Adjustment for ADC Result Readout

0 - Vcc ADC Input Voltage Range

2.7 - V. Differential ADC Voltage Range

Selectable 2.56V or 1.1V ADC Reference Voltage

Free Running or Single Conversion Mode

Interrupt on ADC Conversion Complete

Sleep Mode Noise Canceler

The ATmega640/1280/1281/2560/2561 features a 10-bit successive approximation
ADC. The ADC is connected to an 8/16-channel Analog Multiplexer which allows
eight/sixteen single-ended voltage inputs constructed from the pins of Port A and Port F.
The single-ended voltage inputs refer to OV (GND).

The device also supports 16/32 differential voltage input combinations. Four of the dif-
ferential inputs (ADC1 & ADCO, ADC3 & ADC2, ADC9 & ADC8 and ADC11 & ADC10)
are equipped with a programmable gain stage, providing amplification steps of 0 dB
(1x), 20 dB (10x) or 46 dB (200x) on the differential input voltage before the ADC con-
version. The 16 channels are split in two sections of 8 channels where in each section
seven differential analog input channels share a common negative terminal
(ADC1/ADC9), while any other ADC input in that section can be selected as the positive
input terminal. If 1x or 10x gain is used, 8 bit resolution can be expected. If 200x gain is
used, 7 bit resolution can be expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the
ADC is held at a constant level during conversion. A block diagram of the ADC is shown
in Figure 113.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more
than + 0.3V from V.. See the paragraph “ADC Noise Canceler” on page 287 on how to
connect this pin.

Internal reference voltages of nominally 1.1V, 2.56V or AVCC are provided On-chip.
The voltage reference may be externally decoupled at the AREF pin by a capacitor for
better noise performance.

The Power Reduction ADC bit, PRADC, in “PRRO — Power Reduction Register 0” on
page 55 must be disabled by writing a logical zero to enable the ADC.
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Figure 113. Analog to Digital Converter Block Schematic
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Operation

Starting a Conversion
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The ADC converts an analog input voltage to a 10-bit digital value through successive
approximation. The minimum value represents GND and the maximum value represents
the voltage on the AREF pin minus 1 LSB. Optionally, AVCC or an internal 1.1V or
2.56V reference voltage may be connected to the AREF pin by writing to the REFSn bits
in the ADMUX Register. The internal voltage reference may thus be decoupled by an
external capacitor at the AREF pin to improve noise immunity.

The analog input channel is selected by writing to the MUX bits in ADMUX and ADC-
SRB. Any of the ADC input pins, as well as GND and a fixed bandgap voltage reference,
can be selected as single ended inputs to the ADC. A selection of ADC input pins can be
selected as positive and negative inputs to the differential amplifier.

If differential channels are selected, the voltage difference between the selected input
channel pair then becomes the analog input to the ADC. If single ended channels are
used, the amplifier is bypassed altogether.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage refer-
ence and input channel selections will not go into effect until ADEN is set. The ADC
does not consume power when ADEN is cleared, so it is recommended to switch off the
ADC before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers,
ADCH and ADCL. By default, the result is presented right adjusted, but can optionally
be presented left adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to
read ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content
of the Data Registers belongs to the same conversion. Once ADCL is read, ADC access
to Data Registers is blocked. This means that if ADCL has been read, and a conversion
completes before ADCH is read, neither register is updated and the result from the con-
version is lost. When ADCH is read, ADC access to the ADCH and ADCL Registers is
re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes.
When ADC access to the Data Registers is prohibited between reading of ADCH and
ADCL, the interrupt will trigger even if the result is lost.

A single conversion is started by writing a logical one to the ADC Start Conversion bit,
ADSC. This bit stays high as long as the conversion is in progress and will be cleared by
hardware when the conversion is completed. If a different data channel is selected while
a conversion is in progress, the ADC will finish the current conversion before performing
the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Trig-
gering is enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The
trigger source is selected by setting the ADC Trigger Select bits, ADTS in ADCSRB
(See description of the ADTS bits for a list of the trigger sources). When a positive edge
occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is
started. This provides a method of starting conversions at fixed intervals. If the trigger
signal still is set when the conversion completes, a new conversion will not be started. If
another positive edge occurs on the trigger signal during conversion, the edge will be
ignored. Note that an Interrupt Flag will be set even if the specific interrupt is disabled or
the Global Interrupt Enable bit in SREG is cleared. A conversion can thus be triggered
without causing an interrupt. However, the Interrupt Flag must be cleared in order to trig-
ger a new conversion at the next interrupt event.
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Figure 114. ADC Auto Trigger Logic
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Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion
as soon as the ongoing conversion has finished. The ADC then operates in Free Run-
ning mode, constantly sampling and updating the ADC Data Register. The first
conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this
mode the ADC will perform successive conversions independently of whether the ADC
Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in
ADCSRA to one. ADSC can also be used to determine if a conversion is in progress.
The ADSC bit will be read as one during a conversion, independently of how the conver-
sion was started.

Figure 115. ADC Prescaler
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By default, the successive approximation circuitry requires an input clock frequency
between 50 kHz and 200 kHz. If a lower resolution than 10 bits is needed, the input
clock frequency to the ADC can be as high as 1000 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock fre-
quency from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits
in ADCSRA. The prescaler starts counting from the moment the ADC is switched on by
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setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as the ADEN
bit is set, and is continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the con-
version starts at the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is
switched on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize
the analog circuitry.

When the bandgap reference voltage is used as input to the ADC, it will take a certain
time for the voltage to stabilize. If not stabilized, the first value read after the first conver-
sion may be wrong.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal
conversion and 13.5 ADC clock cycles after the start of an first conversion. When a con-
version is complete, the result is written to the ADC Data Registers, and ADIF is set. In
Single Conversion mode, ADSC is cleared simultaneously. The software may then set
ADSC again, and a new conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This
assures a fixed delay from the trigger event to the start of conversion. In this mode, the
sample-and-hold takes place two ADC clock cycles after the rising edge on the trigger
source signal. Three additional CPU clock cycles are used for synchronization logic.

In Free Running mode, a new conversion will be started immediately after the conver-
sion completes, while ADSC remains high. For a summary of conversion times, see
Table 126.

Figure 116. ADC Timing Diagram, First Conversion (Single Conversion Mode)
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Figure 117. ADC Timing Diagram, Single Conversion
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Figure 118. ADC Timing Diagram, Auto Triggered Conversion
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Figure 119. ADC Timing Diagram, Free Running Conversion
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Differential Channels
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Table 126. ADC Conversion Time

Sample & Hold (Cycles

Conversion Time

Condition from Start of Conversion) (Cycles)
First conversion 13.5 25
Normal conversions, single ended 1.5 13
Auto Triggered conversions 2 13.5
Normal conversions, differential 1.5/2.5 13/14

When using differential channels, certain aspects of the conversion need to be taken
into consideration.

Differential conversions are synchronized to the internal clock CK,pc, equal to half the
ADC clock. This synchronization is done automatically by the ADC interface in such a
way that the sample-and-hold occurs at a specific phase of CK,pg,. A conversion initi-
ated by the user (i.e., all single conversions, and the first free running conversion) when
CKapc2 is low will take the same amount of time as a single ended conversion (13 ADC
clock cycles from the next prescaled clock cycle). A conversion initiated by the user
when CK,pe» is high will take 14 ADC clock cycles due to the synchronization mecha-
nism. In Free Running mode, a new conversion is initiated immediately after the
previous conversion completes, and since CK,pc» is high at this time, all automatically
started (i.e., all but the first) Free Running conversions will take 14 ADC clock cycles.

If differential channels are used and conversions are started by Auto Triggering, the
ADC must be switched off between conversions. When Auto Triggering is used, the
ADC prescaler is reset before the conversion is started. Since the stage is dependent of
a stable ADC clock prior to the conversion, this conversion will not be valid. By disabling
and then re-enabling the ADC between each conversion (writing ADEN in ADCSRA to
“0” then to “1”), only extended conversions are performed. The result from the extended
conversions will be valid. See “Prescaling and Conversion Timing” on page 282 for tim-
ing details.
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The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a tem-
porary register to which the CPU has random access. This ensures that the channels
and reference selection only takes place at a safe point during the conversion. The
channel and reference selection is continuously updated until a conversion is started.
Once the conversion starts, the channel and reference selection is locked to ensure a
sufficient sampling time for the ADC. Continuous updating resumes in the last ADC
clock cycle before the conversion completes (ADIF in ADCSRA is set). Note that the
conversion starts on the following rising ADC clock edge after ADSC is written. The user
is thus advised not to write new channel or reference selection values to ADMUX until
one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic.
Special care must be taken when updating the ADMUX Register, in order to control
which conversion will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If
the ADMUX Register is changed in this period, the user cannot tell if the next conversion
is based on the old or the new settings. ADMUX can be safely updated in the following
ways:

1. When ADATE or ADEN is cleared.

2. During conversion, minimum one ADC clock cycle after the trigger event.

3. After a conversion, before the Interrupt Flag used as trigger source is
cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next
ADC conversion.

Special care should be taken when changing differential channels. Once a differential
channel has been selected, the stage may take as much as 125 ps to stabilize to the
new value. Thus conversions should not be started within the first 125 ps after selecting
a new differential channel. Alternatively, conversion results obtained within this period
should be discarded.

The same settling time should be observed for the first differential conversion after
changing ADC reference (by changing the REFS1:0 bits in ADMUX).

When changing channel selections, the user should observe the following guidelines to
ensure that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion.
The channel selection may be changed one ADC clock cycle after writing one to ADSC.
However, the simplest method is to wait for the conversion to complete before changing
the channel selection.

In Free Running mode, always select the channel before starting the first conversion.
The channel selection may be changed one ADC clock cycle after writing one to ADSC.
However, the simplest method is to wait for the first conversion to complete, and then
change the channel selection. Since the next conversion has already started automati-
cally, the next result will reflect the previous channel selection. Subsequent conversions
will reflect the new channel selection.

When switching to a differential gain channel, the first conversion result may have a
poor accuracy due to the required settling time for the automatic offset cancellation cir-
cuitry. The user should preferably disregard the first conversion result.
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ADC Voltage Reference

ADC Noise Canceler
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The reference voltage for the ADC (Vge) indicates the conversion range for the ADC.
Single ended channels that exceed Vg Will result in codes close to 0x3FF. Ve can be
selected as either AVCC, internal 1.1V reference, internal 2.56V reference or external
AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 1.1V reference is
generated from the internal bandgap reference (VBG) through an internal amplifier. In
either case, the external AREF pin is directly connected to the ADC, and the reference
voltage can be made more immune to noise by connecting a capacitor between the
AREF pin and ground. Vg can also be measured at the AREF pin with a high impedant
voltmeter. Note that Vg is a high impedant source, and only a capacitive load should
be connected in a system. The Internal 2.56V reference is generated from the 1.1V
reference.

If the user has a fixed voltage source connected to the AREF pin, the user may not use
the other reference voltage options in the application, as they will be shorted to the
external voltage. If no external voltage is applied to the AREF pin, the user may switch
between AVCC, 1.1V and 2.56V as reference selection. The first ADC conversion result
after switching reference voltage source may be inaccurate, and the user is advised to
discard this result.

If differential channels are used, the selected reference should not be closer to AVCC
than indicated in “ADC Characteristics — Preliminary Data” on page 382.

The ADC features a noise canceler that enables conversion during sleep mode to
reduce noise induced from the CPU core and other I/O peripherals. The noise canceler
can be used with ADC Noise Reduction and Idle mode. To make use of this feature, the
following procedure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Con-
version mode must be selected and the ADC conversion complete interrupt
must be enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a con-
version once the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC
interrupt will wake up the CPU and execute the ADC Conversion Complete
interrupt routine. If another interrupt wakes up the CPU before the ADC con-
version is complete, that interrupt will be executed, and an ADC Conversion
Complete interrupt request will be generated when the ADC conversion
completes. The CPU will remain in active mode until a new sleep command
is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes
than Idle mode and ADC Noise Reduction mode. The user is advised to write zero to
ADEN before entering such sleep modes to avoid excessive power consumption.

If the ADC is enabled in such sleep modes and the user wants to perform differential
conversions, the user is advised to switch the ADC off and on after waking up from
sleep to prompt an extended conversion to get a valid result.
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Analog Input Circuitry The analog input circuitry for single ended channels is illustrated in Figure 120. An ana-
log source applied to ADCn is subjected to the pin capacitance and input leakage of that
pin, regardless of whether that channel is selected as input for the ADC. When the chan-
nel is selected, the source must drive the S/H capacitor through the series resistance
(combined resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately
10 kQ or less. If such a source is used, the sampling time will be negligible. If a source
with higher impedance is used, the sampling time will depend on how long time the
source needs to charge the S/H capacitor, which can vary widely. The user is recom-
mended to only use low impedant sources with slowly varying signals, since this
minimizes the required charge transfer to the S/H capacitor.

Signal components higher than the Nyquist frequency (fopc/2) should not be present for
either kind of channels, to avoid distortion from unpredictable signal convolution. The
user is advised to remove high frequency components with a low-pass filter before
applying the signals as inputs to the ADC.

Figure 120. Analog Input Circuitry

ADCn W\l
1..100 kQ l
)
Analog Noise Canceling Digital circuitry inside and outside the device generates EMI which might affect the
Techniques accuracy of analog measurements. If conversion accuracy is critical, the noise level can

be reduced by applying the following techniques:

1. Keep analog signal paths as short as possible. Make sure analog tracks run
over the ground plane, and keep them well away from high-speed switching
digital tracks.

2. The AVCC pin on the device should be connected to the digital V¢ supply
voltage via an LC network as shown in Figure 121.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do
not switch while a conversion is in progress.
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Figure 121. ADC Power Connections, ATmega1281/2561.
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Schemes

ADC Accuracy Definitions

ATMEL

The stage has a built-in offset cancellation circuitry that nulls the offset of differential
measurements as much as possible. The remaining offset in the analog path can be
measured directly by selecting the same channel for both differential inputs. This offset
residue can be then subtracted in software from the measurement results. Using this
kind of software based offset correction, offset on any channel can be reduced below
one LSB.

An n-bit single-ended ADC converts a voltage linearly between GND and Vggg in 2"
steps (LSBs). The lowest code is read as 0, and the highest code is read as 2"-1.

Several parameters describe the deviation from the ideal behavior:

e Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal
transition (at 0.5 LSB). Ideal value: 0 LSB.

Figure 123. Offset Error
Output Codeh

————— Ideal ADC
—— Actual ADC

Offset_
< Error”>

Vger Input Voltage

e Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the
last transition (Ox3FE to Ox3FF) compared to the ideal transition (at 1.5 LSB below
maximum). Ideal value: 0 LSB

Figure 124. Gain Error
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.
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¢ Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the
maximum deviation of an actual transition compared to an ideal transition for any
code. Ideal value: 0 LSB.

Figure 125. Integral Non-linearity (INL)
Output Code &

INI

————— Ideal ADC

Actual ADC

[

VREFV Input Voltage

¢ Differential Non-linearity (DNL): The maximum deviation of the actual code width
(the interval between two adjacent transitions) from the ideal code width (1 LSB).
Ideal value: 0 LSB.

Figure 126. Differential Non-linearity (DNL)
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| “on
0x000

0 Vgeg Input Voltage

e Quantization Error: Due to the quantization of the input voltage into a finite number
of codes, a range of input voltages (1 LSB wide) will code to the same value. Always
+ 0.5 LSB.

e Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition
compared to an ideal transition for any code. This is the compound effect of offset,
gain error, differential error, non-linearity, and quantization error. Ideal value: = 0.5
LSB.
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After the conversion is complete (ADIF is high), the conversion result can be found in
the ADC Result Registers (ADCL, ADCH).

For single ended conversion, the result is

V,\ - 1024
ADC = N 77

REF

where V) is the voltage on the selected input pin and Vger the selected voltage refer-
ence (see Table 128 on page 294 and Table 129 on page 295). 0x000 represents
analog ground, and Ox3FF represents the selected reference voltage minus one LSB.

If differential channels are used, the result is

(Vpos—Vneg) - 512
VRrer

ADC =

where Vpqg is the voltage on the positive input pin, Vygg the voltage on the negative
input pin, and Vgee the selected voltage reference. The result is presented in two’s com-
plement form, from 0x200 (-512d) through 0x1FF (+511d). Note that if the user wants to
perform a quick polarity check of the result, it is sufficient to read the MSB of the result
(ADC9 in ADCH). If the bit is one, the result is negative, and if this bit is zero, the result
is positive. Figure 127 shows the decoding of the differential input range.

Table 127 shows the resulting output codes if the differential input channel pair (ADCn -
ADCm) is selected with a gain of GAIN and a reference voltage of Vgge.

Figure 127. Differential Measurement Range
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Table 127. Correlation Between Input Voltage and Output Codes

Vaben Read Code Corresponding Decimal Value
Vapcm + Veer/ GAIN Ox1FF 511

Vapcm + 0.999 Vpee/ GAIN Ox1FF 511

Vapcm + 0.998 Ve / GAIN Ox1FE 510

Vapcm + 0.001 Ve / GAIN 0x001 1

Vabcm 0x000 0

Vapcm - 0.001 Ve / GAIN Ox3FF -1

Vapcm - 0.999 Vger/ GAIN 0x201 -511

Vapcm - Vrer/ GAIN 0x200 -512

Example:

ADMUX = OxFB (ADCS3 - ADC2, 10x gain, 2.56V reference, left adjusted result)
Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.

ADCR =512 * 10 * (300 - 500) / 2560 = -400 = 0x270.

ADCL will thus read 0x00, and ADCH will read 0x9C. Writing zero to ADLAR right

adjusts the result: ADCL = 0x70, ADCH = 0x02.

ATMEL
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Register Description

ADMUX - ADC Multiplexer

Selection Register Bit 7 6 5 4 S 2 ! 0
(0x7C) I REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 I ADMUX
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 128. If these bits
are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set). The internal voltage reference options may not be
used if an external reference voltage is being applied to the AREF pin.

Table 128. Voltage Reference Selections for ADC

REFS1 REFS0 | Voltage Reference Selection(!)
0 0 AREF, Internal Vggg turned off
0 1 AVCC with external capacitor at AREF pin
1 0 Internal 1.1V Voltage Reference with external capacitor at AREF pin
1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin

Note: 1. If 10x or 200x gain is selected, only 2.56 V should be used as Internal Voltage Refer-
ence. For differential conversion, only 1.1V cannot be used as internal voltage
reference.

» Bit 5—- ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data
Register. Write one to ADLAR to left adjust the result. Otherwise, the result is right
adjusted. Changing the ADLAR bit will affect the ADC Data Register immediately,
regardless of any ongoing conversions. For a complete description of this bit, see
“ADCL and ADCH — The ADC Data Register” on page 298.

* Bits 4:0 — MUX4:0: Analog Channel and Gain Selection Bits

The value of these bits selects which combination of analog inputs are connected to the
ADC. See Table 129 for details. If these bits are changed during a conversion, the
change will not go in effect until this conversion is complete (ADIF in ADCSRA is set)
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ADCSRB - ADC Control and
Status Register B

2549K-AVR-01/07

Bit 7 6 5 4 3 2 1 0
(0x7B) I = ACME = = MUX5 ADTS2 ADTS1 ADTSO I ADCSRB
Read/Write R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0

e Bit 3 — MUX5: Analog Channel and Gain Selection Bit

This bit is used together with MUX4:0 in ADMUX to select which combination in of ana-
log inputs are connected to the ADC. See Table 129 for details. If this bit is changed
during a conversion, the change will not go in effect until this conversion is complete.

This bit is not valid for ATmega1281/2561.

Table 129. Input Channel Selections

ATMEL

Single Ended Positive Differential Negative Differential
MUX5:0 Input Input Input Gain
000000 ADCO
000001 ADC1
000010 ADC2
000011 ADC3
N/A
000100 ADC4
000101 ADC5
000110 ADC6
000111 ADC7
001000 ADCO ADCO 10x
001001™M ADC1 ADCO 10x
001010™M ADCO ADCO 200x
001011™M ADC1 ADCO 200x
001100 ADC2 ADC2 10x
001101™M ADC3 ADC2 10x
001110M ADC2 ADC2 200x
001111™M ADC3 ADC2 200x
010000 ADCO ADC1 1x
N/A
010001 ADC1 ADC1 1x
010010 ADC2 ADC1 1x
010011 ADC3 ADC1 1x
010100 ADC4 ADC1 1x
010101 ADC5 ADCH 1x
010110 ADC6 ADC1 1x
010111 ADC7 ADC1 1x
011000 ADCO ADC2 1x
011001 ADC1 ADC2 1x
295
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Table 129. Input Channel Selections (Continued)

ATMEL

Single Ended | Positive Differential Negative Differential
MUX5:0 Input Input Input Gain
011010 ADC2 ADC2 1x
011011 ADC3 ADC2 1x
N/A
011100 ADC4 ADC2 1x
011101 ADC5 ADC2 1x
011110 1.1V (Vgg)
Be N/A
011111 0V (GND)
100000 ADC8
100001 ADC9
100010 ADC10
100011 ADC11
N/A
100100 ADC12
100101 ADC13
100110 ADC14
100111 ADC15
101000 ADC8 ADCS8 10x
101001M ADC9 ADCS8 10x
101010M ADCS8 ADCS8 200x
101011M ADC9 ADCS8 200x
101100M ADC10 ADC10 10x
101101M ADC11 ADC10 10x
101110 ADC10 ADC10 200x
101111 ADC11 ADC10 200x
110000 ADC8 ADC9 1x
110001 ADC9 ADC9 1x
110010 N/A ADC10 ADC9 1x
110011 ADC11 ADC9 1x
110100 ADC12 ADC9 1x
110101 ADC13 ADC9 1x
110110 ADC14 ADC9 1x
110111 ADC15 ADC9 1x
111000 ADC8 ADC10 1x
111001 ADC9 ADC10 1x
111010 ADC10 ADC10 1x
111011 ADC11 ADC10 1x
111100 ADC12 ADC10 1x
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Table 129. Input Channel Selections (Continued)

Single Ended | Positive Differential Negative Differential
MUX5:0 Input Input Input Gain
111101 N/A ADC13 ADC10 1x
111110 Reserved N/A
111111 Reserved N/A

Note: 1. To reach the given accuracy, 10x or 200x Gain should not be used for operating volt-
age below 2.7V

ADCSRA - ADC Control and

Status Register A Bit 7 6 5 4 8 2 ! 0
(0x7A) I ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPSO I ADCSRA
Read/Write RW __RW ___RW __RW __RW __RW _ RW  RW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turn-
ing the ADC off while a conversion is in progress, will terminate this conversion.

¢ Bit 6 — ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Run-
ning mode, write this bit to one to start the first conversion. The first conversion after
ADSC has been written after the ADC has been enabled, or if ADSC is written at the
same time as the ADC is enabled, will take 25 ADC clock cycles instead of the normal
13. This first conversion performs initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is
complete, it returns to zero. Writing zero to this bit has no effect.

e Bit 5 - ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start
a conversion on a positive edge of the selected trigger signal. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB.

e Bit 4 — ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated.
The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in
SREG are set. ADIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, ADIF is cleared by writing a logical one to the flag.
Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be dis-
abled. This also applies if the SBI and CBI instructions are used.

e Bit 3 — ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Com-
plete Interrupt is activated.

¢ Bits 2:0 — ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input
clock to the ADC.
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ADCL and ADCH - The ADC
Data Register

ADLAR =0

ADLAR =1
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Table 130. ADC Prescaler Selections

ADPS2 ADPS1 ADPSO Division Factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128
Bit 15 14 13 12 11 10 9 8
(0x79) - - - - - - ADC9 ADC8 ADCH
(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADCO ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
(0x79) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
(0x78) ADC1 ADCO - - - - - - ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

When an ADC conversion is complete, the result is found in these two registers. If differ-
ential channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Conse-
quently, if the result is left adjusted and no more than 8-bit precision (7 bit + sign bit for
differential input channels) is required, it is sufficient to read ADCH. Otherwise, ADCL
must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is
read from the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared
(default), the result is right adjusted.

e ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in “ADC Conversion
Result” on page 292.
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ADCSRB - ADC Control and
Status Register B
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Bit

(0x7B)
Read/Write
Initial Value

7 6 5 4 3 2 1 0
| - ACME - - MUX5 | ADTS2 | ADTS1 | ADTSO | ADCSRB

R R/W R/W R/W R/W R/W

0 0 0 0 0 0 0

¢ Bit 7 — Res: Reserved Bit

This bit is reserved for future use. To ensure compatibility with future devices, this bit
must be written to zero when ADCSRB is written.

e Bit2:0 - ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will
trigger an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no
effect. A conversion will be triggered by the rising edge of the selected Interrupt Flag.
Note that switching from a trigger source that is cleared to a trigger source that is set,
will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will
start a conversion. Switching to Free Running mode (ADTS[2:0]=0) will not cause a trig-

ger event, even if the ADC Interrupt Flag is set.

Table 131. ADC Auto Trigger Source Selections

ADTS2 ADTSH1 ADTSO Trigger Source
0 0 0 Free Running mode
0 0 1 Analog Comparator
0 1 0 External Interrupt Request 0
0 1 1 Timer/Counter0 Compare Match A
1 0 0 Timer/Counter0 Overflow
1 0 1 Timer/Counter1i Compare Match B
1 1 0 Timer/Counter1 Overflow

1

1

Timer/Counter1 Capture Event

Note:  Free running mode cannot be used for differential channels. (See chapter “Differential
Channels” on page 285)

ATMEL
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DIDRO - Digital Input Disable
Register 0

DIDR2 - Digital Input Disable
Register 2

ATMEL

Bit 7 6 5 4 3 2 1 0

(OX7E) I ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADCOD I DIDRO
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7:0 - ADC7D:ADCOD: ADC7:0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is
disabled. The corresponding PIN Register bit will always read as zero when this bit is
set. When an analog signal is applied to the ADC7:0 pin and the digital input from this
pin is not needed, this bit should be written logic one to reduce power consumption in
the digital input buffer.

Bit 7 6 5 4 3 2 1 0

(0x7D) I ADC15D | ADC14D | ADC13D | ADC12D | ADC11D | ADC10D | ADCS9D ADC8D I DIDR2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7:0 - ADC15D:ADC8D: ADC15:8 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is
disabled. The corresponding PIN Register bit will always read as zero when this bit is
set. When an analog signal is applied to the ADC15:8 pin and the digital input from this
pin is not needed, this bit should be written logic one to reduce power consumption in
the digital input buffer.
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JTAG Interface and
On-chip Debug

System
Features ¢ JTAG (IEEE std. 1149.1 Compliant) Interface
¢ Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
* Debugger Access to:
— All Internal Peripheral Units
— Internal and External RAM
— The Internal Register File
— Program Counter
— EEPROM and Flash Memories
¢ Extensive On-chip Debug Support for Break Conditions, Including
— AVR Break Instruction
— Break on Change of Program Memory Flow
— Single Step Break
— Program Memory Break Points on Single Address or Address Range
— Data Memory Break Points on Single Address or Address Range
* Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* On-chip Debugging Supported by AVR Studio®
Overview The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

* Testing PCBs by using the JTAG Boundary-scan capability
e Programming the non-volatile memories, Fuses and Lock bits
e On-chip debugging

A brief description is given in the following sections. Detailed descriptions for Program-
ming via the JTAG interface, and using the Boundary-scan Chain can be found in the
sections “Programming via the JTAG Interface” on page 361 and “IEEE 1149.1 (JTAG)
Boundary-scan” on page 308, respectively. The On-chip Debug support is considered
being private JTAG instructions, and distributed within ATMEL and to selected third
party vendors only.

Figure 128 shows a block diagram of the JTAG interface and the On-chip Debug sys-
tem. The TAP Controller is a state machine controlled by the TCK and TMS signals. The
TAP Controller selects either the JTAG Instruction Register or one of several Data Reg-
isters as the scan chain (Shift Register) between the TDI — input and TDO - output. The
Instruction Register holds JTAG instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers
used for board-level testing. The JTAG Programming Interface (actually consisting of
several physical and virtual Data Registers) is used for serial programming via the JTAG
interface. The Internal Scan Chain and Break Point Scan Chain are used for On-chip
debugging only.
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Figure 128. Block Diagram
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TAP - Test Access Port
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The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology,
these pins constitute the Test Access Port — TAP. These pins are:

e TMS: Test mode select. This pin is used for navigating through the TAP-controller
state machine.

e TCK: Test Clock. JTAG operation is synchronous to TCK.

e TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data
Register (Scan Chains).

e TDO: Test Data Out. Serial output data from Instruction Register or Data Register.

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST — Test ReSeT —
which is not provided.

When the JTAGEN Fuse is unprogrammed, these four TAP pins are normal port pins,
and the TAP controller is in reset. When programmed, the input TAP signals are inter-
nally pulled high and the JTAG is enabled for Boundary-scan and programming. The
device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is
monitored by the debugger to be able to detect external reset sources. The debugger
can also pull the RESET pin low to reset the whole system, assuming only open collec-
tors on the reset line are used in the application.

Figure 129. TAP Controller State Diagram
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The TAP controller is a 16-state finite state machine that controls the operation of the
Boundary-scan circuitry, JTAG programming circuitry, or On-chip Debug system. The
state transitions depicted in Figure 129 depend on the signal present on TMS (shown
adjacent to each state transition) at the time of the rising edge at TCK. The initial state
after a Power-on Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG inter-
face is:

¢ Atthe TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter
the Shift Instruction Register — Shift-IR state. While in this state, shift the four bits of
the JTAG instructions into the JTAG Instruction Register from the TDI input at the
rising edge of TCK. The TMS input must be held low during input of the 3 LSBs in
order to remain in the Shift-IR state. The MSB of the instruction is shifted in when
this state is left by setting TMS high. While the instruction is shifted in from the TDI
pin, the captured IR-state 0x01 is shifted out on the TDO pin. The JTAG Instruction
selects a particular Data Register as path between TDI and TDO and controls the
circuitry surrounding the selected Data Register.

e Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction
is latched onto the parallel output from the Shift Register path in the Update-IR
state. The Exit-IR, Pause-IR, and Exit2-IR states are only used for navigating the
state machine.

e Atthe TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the
Shift Data Register — Shift-DR state. While in this state, upload the selected Data
Register (selected by the present JTAG instruction in the JTAG Instruction Register)
from the TDI input at the rising edge of TCK. In order to remain in the Shift-DR state,
the TMS input must be held low during input of all bits except the MSB. The MSB of
the data is shifted in when this state is left by setting TMS high. While the Data
Register is shifted in from the TDI pin, the parallel inputs to the Data Register
captured in the Capture-DR state is shifted out on the TDO pin.

e Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected
Data Register has a latched parallel-output, the latching takes place in the Update-
DR state. The Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating
the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between
selecting JTAG instruction and using Data Registers, and some JTAG instructions may
select certain functions to be performed in the Run-Test/Idle, making it unsuitable as an
Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can
always be entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibli-
ography” on page 306.
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Using the Boundary-
scan Chain

Using the On-chip Debug
System
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A complete description of the Boundary-scan capabilities are given in the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 308.

As shown in Figure 128, the hardware support for On-chip Debugging consists mainly of

¢ A scan chain on the interface between the internal AVR CPU and the internal
peripheral units.

* Break Point unit.
e Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by
applying AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the
result to an 1/0 memory mapped location which is part of the communication interface
between the CPU and the JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step
Break, two Program Memory Break Points, and two combined Break Points. Together,
the four Break Points can be configured as either:

e 4 single Program Memory Break Points.
* 3 Single Program Memory Break Point + 1 single Data Memory Break Point.
e 2 single Program Memory Break Points + 2 single Data Memory Break Points.

e 2 single Program Memory Break Points + 1 Program Memory Break Point with mask
(“range Break Point”).

e 2 single Program Memory Break Points + 1 Data Memory Break Point with mask
(“range Break Point”).

A debugger, like the AVR Studio, may however use one or more of these resources for
its internal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Spe-
cific JTAG Instructions” on page 306.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addi-
tion, the OCDEN Fuse must be programmed and no Lock bits must be set for the On-
chip debug system to work. As a security feature, the On-chip debug system is disabled
when either of the LB1 or LB2 Lock bits are set. Otherwise, the On-chip debug system
would have provided a back-door into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR
device with On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR
Instruction Set Simulator. AVR Studio® supports source level execution of Assembly
programs assembled with Atmel Corporation’s AVR Assembler and C programs com-
piled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000 and Microsoft Windows NT®.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide.
Only highlights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level
and on disassembly level. The user can execute the program, single step through the
code either by tracing into or stepping over functions, step out of functions, place the
cursor on a statement and execute until the statement is reached, stop the execution,
and reset the execution target. In addition, the user can have an unlimited number of
code Break Points (using the BREAK instruction) and up to two data memory Break
Points, alternatively combined as a mask (range) Break Point.
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On-chip Debug Specific
JTAG Instructions
PRIVATEO; 0x8

PRIVATE1; 0x9

PRIVATE2; OxA

PRIVATE3; 0xB
Using the JTAG

Programming
Capabilities

Bibliography

ATMEL

The On-chip debug support is considered being private JTAG instructions, and distrib-
uted within ATMEL and to selected third party vendors only. Instruction opcodes are
listed for reference.

Private JTAG instruction for accessing On-chip debug system.
Private JTAG instruction for accessing On-chip debug system.
Private JTAG instruction for accessing On-chip debug system.

Private JTAG instruction for accessing On-chip debug system.

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS,
TDI, and TDO. These are the only pins that need to be controlled/observed to perform
JTAG programming (in addition to power pins). It is not required to apply 12V externally.
The JTAGEN Fuse must be programmed and the JTD bit in the MCUCR Register must
be cleared to enable the JTAG Test Access Port.

The JTAG programming capability supports:

¢ Flash programming and verifying.

e EEPROM programming and verifying.

e Fuse programming and verifying.

e Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or
LB2 are programmed, the OCDEN Fuse cannot be programmed unless first doing a

chip erase. This is a security feature that ensures no back-door exists for reading out the
content of a secured device.

The details on programming through the JTAG interface and programming specific
JTAG instructions are given in the section “Programming via the JTAG Interface” on
page 361.

For more information about general Boundary-scan, the following literature can be

consulted:

* |EEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan
Architecture, IEEE, 1998.

e Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-
Wesley, 1992.
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OCDR - On-chip Debug
Register
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Bit 7 6 5 4 3 2 1 0
0x31 (0x51) |MSB/IDRD LSB | OCDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The OCDR Register provides a communication channel from the running program in the
microcontroller to the debugger. The CPU can transfer a byte to the debugger by writing
to this location. At the same time, an internal flag; I/0O Debug Register Dirty — IDRD — is
set to indicate to the debugger that the register has been written. When the CPU reads
the OCDR Register the 7 LSB will be from the OCDR Register, while the MSB is the
IDRD bit. The debugger clears the IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case,
the OCDR Register can only be accessed if the OCDEN Fuse is programmed, and the
debugger enables access to the OCDR Register. In all other cases, the standard I/O
location is accessed.

Refer to the debugger documentation for further information on how to use this register.

A mElg 307



IEEE 1149.1 (JTAG)
Boundary-scan

Features

System Overview
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JTAG (IEEE std. 1149.1 compliant) Interface

Boundary-scan Capabilities According to the JTAG Standard

Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
Supports the Optional IDCODE Instruction

Additional Public AVR_RESET Instruction to Reset the AVR

The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connections. At system level, all ICs having JTAG capabilities
are connected serially by the TDI/TDO signals to form a long Shift Register. An external
controller sets up the devices to drive values at their output pins, and observe the input
values received from other devices. The controller compares the received data with the
expected result. In this way, Boundary-scan provides a mechanism for testing intercon-
nections and integrity of components on Printed Circuits Boards by using the four TAP
signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAM-
PLE/PRELOAD, and EXTEST, as well as the AVR specific public JTAG instruction
AVR_RESET can be used for testing the Printed Circuit Board. Initial scanning of the
Data Register path will show the ID-Code of the device, since IDCODE is the default
JTAG instruction. It may be desirable to have the AVR device in reset during test mode.
If not reset, inputs to the device may be determined by the scan operations, and the
internal software may be in an undetermined state when exiting the test mode. Entering
reset, the outputs of any port pin will instantly enter the high impedance state, making
the HIGHZ instruction redundant. If needed, the BYPASS instruction can be issued to
make the shortest possible scan chain through the device. The device can be set in the
reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with
data. The data from the output latch will be driven out on the pins as soon as the
EXTEST instruction is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRE-
LOAD should also be used for setting initial values to the scan ring, to avoid damaging
the board when issuing the EXTEST instruction for the first time. SAMPLE/PRELOAD
can also be used for taking a snapshot of the external pins during normal operation of
the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR
must be cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency
higher than the internal chip frequency is possible. The chip clock is not required to run.

The Data Registers relevant for Boundary-scan operations are:
* Bypass Register

¢ Device Identification Register

* Reset Register

¢ Boundary-scan Chain
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The Bypass Register consists of a single Shift Register stage. When the Bypass Regis-
ter is selected as path between TDI and TDO, the register is reset to 0 when leaving the
Capture-DR controller state. The Bypass Register can be used to shorten the scan
chain on a system when the other devices are to be tested.

Figure 130 shows the structure of the Device Identification Register.

Figure 130. The Format of the Device Identification Register

MSB LSB
Bit 31 28 27 12 11 1 0
DeviceID |  Version | Part Number | Manufacturer ID | 1 |
4 bits 16 bits 11 bits 1-bit

Version is a 4-bit number identifying the revision of the component. The JTAG version
number follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on.

The part number is a 16-bit code identifying the component. The JTAG Part Number for
ATmega640/1280/1281/2560/2561 is listed in Table 154 on page 345.

The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufac-
turer ID for ATMEL is listed in Table 154 on page 345.

The Reset Register is a test Data Register used to reset the part. Since the AVR tri-
states Port Pins when reset, the Reset Register can also replace the function of the
unimplemented optional JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the fuse settings for the clock options, the part will remain reset for a reset time-out
period (see “Clock Sources” on page 39) after releasing the Reset Register. The output
from this Data Register is not latched, so the reset will take place immediately, as shown
in Figure 131.

Figure 131. Reset Register
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> D Q
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Boundary-scan Chain

Boundary-scan Specific
JTAG Instructions

EXTEST; 0x0

IDCODE; 0x1

SAMPLE_PRELOAD; 0x2

AVR_RESET; 0xC

ATMEL

The Boundary-scan Chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connections.

See “Boundary-scan Chain” on page 311 for a complete description.

The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are
the JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ
instruction is not implemented, but all outputs with tri-state capability can be set in high-
impedant state by using the AVR_RESET instruction, since the initial state for all port
pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which Data Register is selected as path between TDI and TDO for
each instruction.

Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for
testing circuitry external to the AVR package. For port-pins, Pull-up Disable, Output
Control, Output Data, and Input Data are all accessible in the scan chain. For Analog cir-
cuits having off-chip connections, the interface between the analog and the digital logic
is in the scan chain. The contents of the latched outputs of the Boundary-scan chain is
driven out as soon as the JTAG IR-Register is loaded with the EXTEST instruction.

The active states are:

e Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
e  Shift-DR: The Internal Scan Chain is shifted by the TCK input.

e Update-DR: Data from the scan chain is applied to output pins.

Optional JTAG instruction selecting the 32 bit ID-Register as Data Register. The ID-
Register consists of a version number, a device number and the manufacturer code
chosen by JEDEC. This is the default instruction after power-up.

The active states are:

* Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan
Chain.

e  Shift-DR: The IDCODE scan chain is shifted by the TCK input.

Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of
the input/output pins without affecting the system operation. However, the output latches
are not connected to the pins. The Boundary-scan Chain is selected as Data Register.

The active states are:
e Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
e  Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

e Update-DR: Data from the Boundary-scan chain is applied to the output latches.
However, the output latches are not connected to the pins.

The AVR specific public JTAG instruction for forcing the AVR device into the Reset
mode or releasing the JTAG reset source. The TAP controller is not reset by this instruc-
tion. The one bit Reset Register is selected as Data Register. Note that the reset will be
active as long as there is a logic “one” in the Reset Chain. The output from this chain is
not latched.
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The active states are:
e Shift-DR: The Reset Register is shifted by the TCK input.

Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:
* Capture-DR: Loads a logic “0” into the Bypass Register.
e Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connection.

Figure 132 shows the Boundary-scan Cell for a bi-directional port pin. The pull-up func-
tion is disabled during Boundary-scan when the JTAG IC contains EXTEST or
SAMPLE_PRELOAD. The cell consists of a bi-directional pin cell that combines the
three signals Output Control - OCxn, Output Data - ODxn, and Input Data - IDxn, into
only a two-stage Shift Register. The port and pin indexes are not used in the following
description

The Boundary-scan logic is not included in the figures in the datasheet. Figure 133
shows a simple digital port pin as described in the section “I/O-Ports” on page 83. The
Boundary-scan details from Figure 132 replaces the dashed box in Figure 133.

When no alternate port function is present, the Input Data - ID - corresponds to the
PINxn Register value (but ID has no synchronizer), Output Data corresponds to the
PORT Register, Output Control corresponds to the Data Direction - DD Register, and
the Pull-up Enable - PUExn - corresponds to logic expression PUD - DDxn - PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 133 to
make the scan chain read the actual pin value. For analog function, there is a direct con-
nection from the external pin to the analog circuit. There is no scan chain on the
interface between the digital and the analog circuitry, but some digital control signal to
analog circuitry are turned off to avoid driving contention on the pads.

When JTAG IR contains EXTEST or SAMPLE_PRELOAD the clock is not sent out on
the port pins even if the CKOUT fuse is programmed. Even though the clock is output
when the JTAG IR contains SAMPLE_PRELOAD, the clock is not sampled by the
boundary scan.
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Figure 132. Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function.
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Figure 133. General Port Pin Schematic Diagram
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Description for Details!
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Scanning the RESET Pin The RESET pin accepts 5V active low logic for standard reset operation, and 12V active

high logic for High Voltage Parallel programming. An observe-only cell as shown in Fig-
ure 134 is inserted for the 5V reset signal.

Figure 134. Observe-only Cell

To
Next
ShiftDR Cell
From System Pin ® ( I > To System Logic
FF1
D Q

From ClockDR
Previous
Cell

A IIIEI% 313

2549K-AVR-01/07



Boundary-scan Related
Register in /O Memory

MCUCR - MCU Control
Register

MCUSR - MCU Status
Register

ATMEL

The MCU Control Register contains control bits for general MCU functions.

Bit 7 6 5 4 3 2 1 0
oxas(xs5) [ Jm | - | - | PuD | - | - | IVSEL | IVCE | MCUCR
Read/Write R/W R R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7 — JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed.
If this bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling
or enabling of the JTAG interface, a timed sequence must be followed when changing
this bit: The application software must write this bit to the desired value twice within four
cycles to change its value. Note that this bit must not be altered when using the On-chip
Debug system.

The MCU Status Register provides information on which reset source caused an MCU
reset.

Bit 7 6 5 4 3 2 1 0

0x34 (0x54) I - JTRF WDRF BORF EXTRF PORF I MCUSR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

e Bit 4 — JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

314 ATmega640/1280/1281/2560/256 1 m———
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ATmega640/1280/1281/25 Table 132 shows the Scan order between TDI and TDO when the Boundary-scan chain
60/2561 Boundary-scan is selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit
Order scanned out. The scan order follows the pin-out order as far as possible. Therefore, the
bits of Port A and Port K is scanned in the opposite bit order of the other ports. Excep-
tions from the rules are the Scan chains for the analog circuits, which constitute the
most significant bits of the scan chain regardless of which physical pin they are con-
nected to. In Figure 132, PXn. Data corresponds to FFO, PXn. Control corresponds to
FF1, PXn. Bit 4, 5, 6 and 7 of Port F is not in the scan chain, since these pins constitute

the TAP pins when the JTAG is enabled.

Boundary-scan

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable

Description Language devices in a standard format used by automated test-generation software. The order
Files and function of bits in the Boundary-scan Data Register are included in this description.

BSDL files are available for ATmega1281/2561 and ATmega640/1280/2560.

Table 132. ATmega640/1280/2560 Boundary-scan Order

Bit Number | Signal Name Module
164 PG5.Data Port G
163 PG5.Control

162 PEO.Data Port E
161 PEO.Control

160 PE1.Data

159 PE1.Control

158 PE2.Data

157 PE2.Control

156 PE3.Data

155 PE3.Control

154 PE4.Data

153 PE4.Control

152 PES5.Data

151 PE5.Control

150 PE6.Data

149 PE6.Control

148 PE7.Data

147 PE7.Control

146 PHO.Data Port H
145 PHO.Control

144 PH1.Data

143 PH1.Control

142 PH2.Data

141 PH2.Control

2549K-AVR-01/07
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Table 132. ATmega640/1280/2560 Boundary-scan Order (Continued)

Bit Number | Signal Name Module
140 PH3.Data

139 PH3.Control

138 PH4.Data

137 PH4.Control

136 PH5.Data

135 PH5.Control

134 PH6.Data

133 PH6.Control

132 PBO0.Data Port B
131 PBO0.Control

130 PB1.Data

129 PB1.Control

128 PB2.Data

127 PB2.Control

126 PB3.Data

125 PB3.Control

124 PB4.Data

123 PB4.Control

122 PB5.Data

121 PB5.Control

120 PB6.Data

119 PB6.Control

118 PB7.Data

117 PB7.Control

116 PH7.Data Port H
115 PH7.Control

114 PG3.Data Port G
113 PG3.Control

112 PG4.Data

111 PG4.Control

110 RSTT Reset Logic (Observe Only)
109 PLO.Data Port L
108 PLO.Control

107 PL1.Data

106 PL1.Control

105 PL2.Data

ATmega640/1280/1281/2560/2561 m———
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Table 132. ATmega640/1280/2560 Boundary-scan Order (Continued)

Bit Number | Signal Name Module
104 PL2.Control

103 PL3.Data

102 PL3.Control

101 PL4.Data

100 PL4.Control

99 PL5.Data

98 PL5.Control

97 PL6.Data

96 PL6.Control

95 PL7.Data

94 PL7.Control

93 PDO0.Data Port D
92 PDO.Control

91 PD1.Data

90 PD1.Control

89 PD2.Data

88 PD2.Control

87 PD3.Data

86 PD3.Control

85 PD4.Data

84 PD4.Control

83 PD5.Data

82 PD5.Control

81 PD6.Data

80 PD6.Control

79 PD7.Data

78 PD7.Control

77 PGO0.Data Port G
76 PGO0.Control

75 PG1.Data

74 PG1.Control

73 PCO0.Data Port C
72 PCO0.Control

71 PC1.Data

70 PC1.Control

69 PC2.Data

AIMEL 317
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Table 132. ATmega640/1280/2560 Boundary-scan Order (Continued)

ATMEL

Bit Number | Signal Name Module
68 PC2.Control

67 PC3.Data

66 PC3.Control

65 PC4.Data

64 PC4.Control

63 PC5.Data

62 PC5.Control

61 PCé6.Data

60 PCé6.Control

59 PC7.Data

58 PC7.Control

57 PJ0.Data Port J
56 PJ0.Control

55 PJ1.Data

54 PJ1.Control

53 PJ2.Data

52 PJ2.Control

51 PJ3.Data

50 PJ3.Control

49 PJ4.Data

48 PJ4.Control

47 PJ5.Data

46 PJ5.Control

45 PJ6.Data

44 PJ6.Control

43 PG2.Data Port G
42 PG2.Control

41 PA7.Data Port A
40 PA7.Control

39 PA6.Data

38 PA6.Control

37 PA5.Data

36 PA5.Control

35 PA4.Data

34 PA4.Control

33 PA3.Data
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Table 132. ATmega640/1280/2560 Boundary-scan Order (Continued)

Bit Number | Signal Name Module
32 PA3.Control

31 PA2.Data

30 PA2.Control

29 PA1.Data

28 PA1.Control

27 PAO.Data

26 PAO.Control

25 PJ7.Data Port J
24 PJ7.Control

23 PK7.Data Port K
22 PK7.Control

21 PK6.Data

20 PK6.Control

19 PK5.Data

18 PK5.Control

17 PK4.Data

16 PK4.Control

15 PK3.Data

14 PK3.Control

13 PK2.Data

12 PK2.Control

11 PK1.Data

10 PK1.Control

9 PKO0.Data

8 PKO.Control

7 PF3.Data Port F
6 PF3.Control

5 PF2.Data

4 PF2.Control

3 PF1.Data

2 PF1.Control

1 PFO0.Data

0 PF0.Control
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Table 133. ATmega1281/2561 Boundary-scan Order

Bit Number | Signal Name Module
100 PG5.Data Port G
99 PG5.Control

98 PEO.Data Port E
97 PEO.Control

96 PE1.Data

95 PE1.Control

94 PE2.Data

93 PE2.Control

92 PE3.Data

91 PE3.Control

90 PE4.Data

89 PE4.Control

88 PE5.Data

87 PE5.Control

86 PE6.Data

85 PE6.Control

84 PE7.Data

83 PE7.Control

82 PBO0.Data Port B
81 PBO0.Control

80 PB1.Data

79 PB1.Control

78 PB2.Data

77 PB2.Control

76 PB3.Data

75 PB3.Control

74 PB4.Data

73 PB4.Control

72 PB5.Data

71 PB5.Control

70 PB6.Data

69 PB6.Control

68 PB7.Data

67 PB7.Control

66 PG3.Data Port G
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Table 133. ATmega1281/2561 Boundary-scan Order (Continued)

Bit Number | Signal Name Module
65 PG3.Control

64 PG4.Data

63 PG4.Control

62 RSTT Reset Logic (Observe Only)
61 PDO0.Data Port D
60 PDO.Control

59 PD1.Data

58 PD1.Control

57 PD2.Data

56 PD2.Control

55 PD3.Data

54 PD3.Control

53 PD4.Data

52 PD4.Control

51 PD5.Data

50 PD5.Control

49 PD6.Data

48 PD6.Control

47 PD7.Data

46 PD7.Control

45 PGO0.Data Port G
44 PGO0.Control

43 PG1.Data

42 PG1.Control

4 PCO0.Data Port C
40 PCO0.Control

39 PC1.Data

38 PC1.Control

37 PC2.Data

36 PC2.Control

35 PC3.Data

34 PC3.Control

33 PC4.Data

32 PC4.Control

31 PC5.Data

30 PC5.Control
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Table 133. ATmega1281/2561 Boundary-scan Order (Continued)

ATMEL

Bit Number | Signal Name Module
29 PCé6.Data

28 PCé6.Control

27 PC7.Data

26 PC7.Control

25 PG2.Data Port G
24 PG2.Control

23 PA7.Data Port A
22 PA7.Control

21 PA6.Data

20 PA6.Control

19 PA5.Data

18 PA5.Control

17 PA4.Data

16 PA4.Control

15 PA3.Data

14 PA3.Control

13 PA2.Data

12 PA2.Control

11 PA1.Data

10 PA1.Control

9 PAO.Data

8 PAO.Control

7 PF3.Data Port F
6 PF3.Control

5 PF2.Data

4 PF2.Control

3 PF1.Data

2 PF1.Control

1 PFO0.Data

0 PF0.Control
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Boot Loader Support — Read-While-Write Self-Programming

Boot Loader Features

Application and Boot
Loader Flash Sections

Application Section

BLS - Boot Loader Section

Read-While-Write and No
Read-While-Write Flash
Sections

2549K-AVR-01/07

The Boot Loader Support provides a real Read-While-Write Self-Programming mecha-
nism for downloading and uploading program code by the MCU itself. This feature
allows flexible application software updates controlled by the MCU using a Flash-resi-
dent Boot Loader program. The Boot Loader program can use any available data
interface and associated protocol to read code and write (program) that code into the
Flash memory, or read the code from the program memory. The program code within
the Boot Loader section has the capability to write into the entire Flash, including the
Boot Loader memory. The Boot Loader can thus even modify itself, and it can also
erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with fuses and the Boot Loader has two separate sets of
Boot Lock bits which can be set independently. This gives the user a unique flexibility to
select different levels of protection.

Read-While-Write Self-Programming

Flexible Boot Memory Size

High Security (Separate Boot Lock Bits for a Flexible Protection)
Separate Fuse to Select Reset Vector

Optimized Page!" Size

Code Efficient Algorithm

Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 155 on page
345) used during programming. The page organization does not affect normal
operation.

The Flash memory is organized in two main sections, the Application section and the
Boot Loader section (see Figure 136). The size of the different sections is configured by
the BOOTSZ Fuses as shown in Table 140 on page 335 and Figure 136. These two
sections can have different level of protection since they have different sets of Lock bits.

The Application section is the section of the Flash that is used for storing the application
code. The protection level for the Application section can be selected by the application
Boot Lock bits (Boot Lock bits 0), see Table 135 on page 327. The Application section
can never store any Boot Loader code since the SPM instruction is disabled when exe-
cuted from the Application section.

While the Application section is used for storing the application code, the The Boot
Loader software must be located in the BLS since the SPM instruction can initiate a pro-
gramming when executing from the BLS only. The SPM instruction can access the
entire Flash, including the BLS itself. The protection level for the Boot Loader section
can be selected by the Boot Loader Lock bits (Boot Lock bits 1), see Table 136 on page
327.

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot
Loader software update is dependent on which address that is being programmed. In
addition to the two sections that are configurable by the BOOTSZ Fuses as described
above, the Flash is also divided into two fixed sections, the Read-While-Write (RWW)
section and the No Read-While-Write (NRWW) section. The limit between the RWW-
and NRWW sections is given in Table 134 and Figure 135 on page 325. The main differ-
ence between the two sections is:

* When erasing or writing a page located inside the RWW section, the NRWW section
can be read during the operation.
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RWW - Read-While-Write
Section

NRWW - No Read-While-Write
Section

ATMEL

* When erasing or writing a page located inside the NRWW section, the CPU is halted
during the entire operation.

Note that the user software can never read any code that is located inside the RWW
section during a Boot Loader software operation. The syntax “Read-While-Write sec-
tion” refers to which section that is being programmed (erased or written), not which
section that actually is being read during a Boot Loader software update.

If a Boot Loader software update is programming a page inside the RWW section, it is
possible to read code from the Flash, but only code that is located in the NRWW sec-
tion. During an on-going programming, the software must ensure that the RWW section
never is being read. If the user software is trying to read code that is located inside the
RWW section (i.e., by load program memory, call, or jump instructions or an interrupt)
during programming, the software might end up in an unknown state. To avoid this, the
interrupts should either be disabled or moved to the Boot Loader section. The Boot
Loader section is always located in the NRWW section. The RWW Section Busy bit
(RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be
read as logical one as long as the RWW section is blocked for reading. After a program-
ming is completed, the RWWSB must be cleared by software before reading code
located in the RWW section. See “SPMCSR — Store Program Memory Control and Sta-
tus Register” on page 340. for details on how to clear RWWSB.

The code located in the NRWW section can be read when the Boot Loader software is
updating a page in the RWW section. When the Boot Loader code updates the NRWW
section, the CPU is halted during the entire Page Erase or Page Write operation.

Table 134. Read-While-Write Features

Which Section does the Z-pointer Which Section can be Read-While-Write
Address during the Programming? | Read during Programming? CPU Halted? Supported?
RWW Section NRWW Section No Yes
NRWW Section None Yes No

3¢ ATmega640/1280/1281/2560/2561 m———
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Figure 135. Read-While-Write vs. No Read-While-Write
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the Operation
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Figure 136. Memory Sections
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Note: 1. The parameters in the figure above are given in Table 140 on page 335.

If no Boot Loader capability is needed, the entire Flash is available for application code.
The Boot Loader has two separate sets of Boot Lock bits which can be set indepen-
dently. This gives the user a unique flexibility to select different levels of protection.

The user can select:

* To protect the entire Flash from a software update by the MCU.

¢ To protect only the Boot Loader Flash section from a software update by the MCU.
e To protect only the Application Flash section from a software update by the MCU.

¢ Allow software update in the entire Flash.

See Table 135 and Table 136 for further details. The Boot Lock bits can be set in soft-
ware and in Serial or Parallel Programming mode, but they can be cleared by a Chip
Erase command only. The general Write Lock (Lock Bit mode 2) does not control the
programming of the Flash memory by SPM instruction. Similarly, the general

Read/Write Lock (Lock Bit mode 1) does not control reading nor writing by
(E)LPM/SPM, if it is attempted.

126  ATmega640/1280/1281/2560/2561 m———
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Table 135. Boot Lock Bit0 Protection Modes (Application Section)(")

BLBO Mode

BLB02

BLBO1

Protection

1

1

1

No restrictions for SPM or (E)LPM accessing the
Application section.

SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and
(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 136. Boot Lock Bit1 Protection Modes (Boot Loader Section)("

BLB1 Mode

BLB12

BLB11

Protection

1

1

1

No restrictions for SPM or (E)LPM accessing the Boot
Loader section.

SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section,
and (E)LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

(E)LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

Note: 1. “1” means unprogrammed, “0” means programmed

Entering the Boot Loader Entering the Boot Loader takes place by a jump or call from the application program.
This may be initiated by a trigger such as a command received via USART, or SPI inter-
face. Alternatively, the Boot Reset Fuse can be programmed so that the Reset Vector is
pointing to the Boot Flash start address after a reset. In this case, the Boot Loader is
started after a reset. After the application code is loaded, the program can start execut-
ing the application code. Note that the fuses cannot be changed by the MCU itself. This
means that once the Boot Reset Fuse is programmed, the Reset Vector will always
point to the Boot Loader Reset and the fuse can only be changed through the serial or

Program

2549K-AVR-01/07

parallel programming interface.

Table 137. Boot Reset Fuse!"

BOOTRST | Reset Address
1 Reset Vector = Application Reset (address 0x0000)
0 Reset Vector = Boot Loader Reset (see Table 140 on page 335)

Note: 1. “1” means unprogrammed, “0” means programmed

ATMEL
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Addressing the Flash

During Self-
Programming

Self-Programming the

Flash

ATMEL

The Z-pointer is used to address the SPM commands. The Z pointer consists of the Z-
registers ZL and ZH in the register file, and RAMPZ in the 1/0O space. The number of bits
actually used is implementation dependent. Note that the RAMPZ register is only imple-
mented when the program space is larger than 64K bytes.

Bit 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8
RAMPZ RAMPZ7 RAMPZ6 RAMPZ5 RAMPZ4 RAMPZ3 RAMPZ2 RAMPZ1 RAMPZ0
ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 z8
ZL (R30) z7 Z6 z5 z4 Z3 z2 Z1 Z0

7 6 5 4 3 2 1 0

Since the Flash is organized in pages (see Table 155 on page 345), the Program
Counter can be treated as having two different sections. One section, consisting of the
least significant bits, is addressing the words within a page, while the most significant
bits are addressing the pages. This is shown in Figure 137. Note that the Page Erase
and Page Write operations are addressed independently. Therefore it is of major impor-
tance that the Boot Loader software addresses the same page in both the Page Erase
and Page Write operation. Once a programming operation is initiated, the address is
latched and the Z-pointer can be used for other operations.

The (E)LPM instruction use the Z-pointer to store the address. Since this instruction
addresses the Flash byte-by-byte, also bit Z0 of the Z-pointer is used.

Figure 137. Addressing the Flash During SPM(")

BIT 15 ZPCMSB ZPAGEMSB 1 0
Z - REGISTER | 0 |
s PCMSB PAGEMSB
PROGRAM
COUNTEN PCPAGE PCWORD
PAGE ADDRESS WORD ADDRESS
WITHIN THE FLASH WITHIN A PAGE
PROGRAM MEMORY PAGE PCWORD[PAGEMSB:0]:
PAGE S INSTRUCTION WORD 00
! 01
\
! 02
\
< \
L >

\ PAGEEND

Note: 1. The different variables used in Figure 137 are listed in Table 142 on page 335.

The program memory is updated in a page by page fashion. Before programming a
page with the data stored in the temporary page buffer, the page must be erased. The
temporary page buffer is filled one word at a time using SPM and the buffer can be filled
either before the Page Erase command or between a Page Erase and a Page Write
operation:

128 ATmega640/1280/1281/2560/2561 m————
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Performing Page Erase by
SPM

Filling the Temporary Buffer
(Page Loading)

Performing a Page Write

Using the SPM Interrupt

2549K-AVR-01/07

Alternative 1, fill the buffer before a Page Erase
e Fill temporary page buffer

e Perform a Page Erase

e Perform a Page Write

Alternative 2, fill the buffer after Page Erase
e Perform a Page Erase

e Fill temporary page buffer

e Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for
example in the temporary page buffer) before the erase, and then be rewritten. When
using alternative 1, the Boot Loader provides an effective Read-Modify-Write feature
which allows the user software to first read the page, do the necessary changes, and
then write back the modified data. If alternative 2 is used, it is not possible to read the
old data while loading since the page is already erased. The temporary page buffer can
be accessed in a random sequence. It is essential that the page address used in both
the Page Erase and Page Write operation is addressing the same page. See “Simple
Assembly Code Example for a Boot Loader” on page 333 for an assembly code
example.

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in
R1 and RO is ignored. The page address must be written to PCPAGE in the Z-register.
Other bits in the Z-pointer will be ignored during this operation.

e Page Erase to the RWW section: The NRWW section can be read during the Page
Erase.

* Page Erase to the NRWW section: The CPU is halted during the operation.

To write an instruction word, set up the address in the Z-pointer and data in R1:RO0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing
SPMCSR. The content of PCWORD in the Z-register is used to address the data in the
temporary buffer. The temporary buffer will auto-erase after a Page Write operation or
by writing the RWWSRE bit in SPMCSR. It is also erased after a system reset. Note that
it is not possible to write more than one time to each address without erasing the tempo-
rary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded
is still buffered.

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in
R1 and RO is ignored. The page address must be written to PCPAGE. Other bits in the
Z-pointer must be written to zero during this operation.

e Page Write to the RWW section: The NRWW section can be read during the Page
Write.

* Page Write to the NRWW section: The CPU is halted during the operation.

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt
when the SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used
instead of polling the SPMCSR Register in software. When using the SPM interrupt, the
Interrupt Vectors should be moved to the BLS section to avoid that an interrupt is
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accessing the RWW section when it is blocked for reading. How to move the interrupts
is described in “Interrupts” on page 69.

Special care must be taken if the user allows the Boot Loader section to be updated by
leaving Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can
corrupt the entire Boot Loader, and further software updates might be impossible. If it is
not necessary to change the Boot Loader software itself, it is recommended to program
the Boot Lock bit11 to protect the Boot Loader software from any internal software
changes.

During Self-Programming (either Page Erase or Page Write), the RWW section is
always blocked for reading. The user software itself must prevent that this section is
addressed during the self programming operation. The RWWSB in the SPMCSR will be
set as long as the RWW section is busy. During Self-Programming the Interrupt Vector
table should be moved to the BLS as described in “Interrupts” on page 69, or the inter-
rupts must be disabled. Before addressing the RWW section after the programming is
completed, the user software must clear the RWWSB by writing the RWWSRE. See
“Simple Assembly Code Example for a Boot Loader” on page 333 for an example.

To set the Boot Loader Lock bits and general Lock bits, write the desired data to RO,
write “X0001001” to SPMCSR and execute SPM within four clock cycles after writing
SPMCSR.

Bit 7 6 5 4 3 2 1 0
RO | 1 | 1 | BLB12 | BLB11 | BLB02 | BLBo1 | LB2 | LB1 |

See Table 135 and Table 136 for how the different settings of the Boot Loader bits affect
the Flash access.

If bits 5:0 in RO are cleared (zero), the corresponding Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in
SPMCSR. The Z-pointer is don’t care during this operation, but for future compatibility it
is recommended to load the Z-pointer with 0x0001 (same as used for reading the 1O,
bits). For future compatibility it is also recommended to set bits 7 and 6 in RO to “1” when
writing the Lock bits. When programming the Lock bits the entire Flash can be read dur-
ing the operation.

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Fuses and Lock bits from software will also be prevented during the
EEPROM write operation. It is recommended that the user checks the status bit (EEPE)
in the EECR Register and verifies that the bit is cleared before writing to the SPMCSR
Register.
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It is possible to read both the Fuse and Lock bits from software. To read the Lock bits,
load the Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR.
When an (E)LPM instruction is executed within three CPU cycles after the BLBSET and
SPMEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the destina-
tion register. The BLBSET and SPMEN bits will auto-clear upon completion of reading
the Lock bits or if no (E)LPM instruction is executed within three CPU cycles or no SPM
instruction is executed within four CPU cycles. When BLBSET and SPMEN are cleared,
(E)LPM will work as described in the Instruction set Manual.

Bit 7 6 5 4 3 2 1 0
Rd | - | - | BLB12 | BLB11 | BLB02 | BLBo1 | LB2 | LB1 |

The algorithm for reading the Fuse Low byte is similar to the one described above for
reading the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and
set the BLBSET and SPMEN bits in SPMCSR. When an (E)LPM instruction is executed
within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the value
of the Fuse Low byte (FLB) will be loaded in the destination register as shown below.
Refer to Table 153 on page 344 for a detailed description and mapping of the Fuse Low
byte.

Bit 7 6 5 4 3 2 1 0
Rd | FLB? | FLB6 | FLB5 | FLB4 | FLB3 | FLB2 | FLB1 | FLBO |

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an
(E)LPM instruction is executed within three cycles after the BLBSET and SPMEN bits
are set in the SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the des-
tination register as shown below. Refer to Table 152 on page 344 for detailed
description and mapping of the Fuse High byte.

Bit 7 6 5 4 3 2 1 0
Rd | FHB7 | FHB6 | FHBS | FHB4 | FHB3 | FHB2 | FHB1 | FHBO |

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an (E)LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCSR, the value of the Extended Fuse byte (EFB) will be loaded in the destina-
tion register as shown below. Refer to Table 151 on page 343 for detailed description
and mapping of the Extended Fuse byte.

Bit 7 6 5 4 3 2 1 0
Rd |—|—|—|—|—|EFBZ|EFB1|EFBO|

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that
are unprogrammed, will be read as one.

To read the Signature Row from software, load the Z-pointer with the signature byte
address given in Table 138 on page 332 and set the SIGRD and SPMEN bits in
SPMCSR. When an LPM instruction is executed within three CPU cycles after the
SIGRD and SPMEN bits are set in SPMCSR, the signature byte value will be loaded in
the destination register. The SIGRD and SPMEN bits will auto-clear upon completion of
reading the Signature Row Lock bits or if no LPM instruction is executed within three

A mElg 331



Preventing Flash Corruption

Programming Time for Flash
when Using SPM

ATMEL

CPU cycles. When SIGRD and SPMEN are cleared, LPM will work as described in the
Instruction set Manual.

Table 138. Signature Row Addressing

Signature Byte Z-Pointer Address
Device Signature Byte 1 0x0000
Device Signature Byte 2 0x0002
Device Signature Byte 3 0x0004
RC Oscillator Calibration Byte 0x0001

Note:  All other addresses are reserved for future use.

During periods of low V¢, the Flash program can be corrupted because the supply volt-
age is too low for the CPU and the Flash to operate properly. These issues are the same
as for board level systems using the Flash, and the same design solutions should be
applied.

A Flash program corruption can be caused by two situations when the voltage is too low.
First, a regular write sequence to the Flash requires a minimum voltage to operate cor-
rectly. Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage
for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one

is sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot
Loader Lock bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply
voltage. This can be done by enabling the internal Brown-out Detector (BOD) if
the operating voltage matches the detection level. If not, an external low Vg
reset protection circuit can be used. If a reset occurs while a write operation is in
progress, the write operation will be completed provided that the power supply
voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low V. This
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the SPMCSR Register and thus the Flash from unintentional
writes.

The calibrated RC Oscillator is used to time Flash accesses. Table 139 shows the typi-
cal programming time for Flash accesses from the CPU.

Table 139. SPM Programming Time

Symbol Min Programming Time | Max Programming Time

Flash write (Page Erase, Page Write,

and write Lock bits by SPM) 3.7ms 4.5ms
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;-the routine writes one page of data from RAM to Flash

; the first data location in RAM is pointed to by the Y pointer

; the first data location in Flash is pointed to by the Z-pointer

;—error handling is not included

;-the routine must be placed inside the Boot space

; (at least the Do_spm sub routine). Only code inside NRWW section
can

; be read during Self-Programming (Page Erase and Page Write).

;-registers used: r0, rl, templ (rl6), temp2 (rl7), looplo (r24),

; loophi (r25), spmcrval (r20)

; storing and restoring of registers is not included in the routine

; register usage can be optimized at the expense of code size

;-It is assumed that either the interrupt table is moved to the
Boot

; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not
words
.0org SMALLBOOTSTART
Write_page:
; Page Erase
1di spmcrval, (1<<PGERS) | (1<<SPMEN)

call Do_spm

; re-enable the RWW section

1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer

1di looplo, low(PAGESIZEB) ;init loop variable
1di loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
Wrloop:

1d r0, Y+

1d rl, Y+

1di spmcrval, (1<<SPMEN)

call Do_spm

adiw ZH:2L, 2

sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write

subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
1di spmcrval, (1<<PGWRT) | (l<<SPMEN)

call Do_spm
; re-enable the RWW section
1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)

call Do_spm

; read back and check, optional

1di looplo, low(PAGESIZEB) ;init loop variable
1di loophi, high (PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)
Rdloop:

elpm r0, Z+
1d rl, Y+
cpse r0, rl
jmp Error
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sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:

in templ, SPMCSR

sbrs templ, RWWSB ; If RWWSB is set, the RWW section i1s not
ready vet

ret

; re-enable the RWW section

1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)

call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete
Wait_spm:
in templ, SPMCSR
sbrc templ, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present
Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
Spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
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ATmega640 Boot Loader

Parameters

In Table 140 through Table 142, the parameters used in the description of the Self-Pro-
gramming are given.

Table 140. Boot Size Configuration, ATmega640(")
[
[ I
28
c T &
i) T o
TR 1E B
™ o [0 = "6‘ o -la 2 3 5
N N N © O g o ri 20~
gg & 4 i 49 25 E08
& 8 & & 32 %z =% EE%
o o o o <ic o W o alwn
512 0x0000 - 0x7EQO -
1 1 | ods | 4 | ox/DFE | oxsFEE | OX7DFF | OX7E00
1024 0x0000 - 0x7C00 -
1 0 | ods 8 | o7BFE | oFFE | OXTBFF | 0x7C00
2048 0x0000 - 0x7800 -
0 T words | 18 | ox77FF ooRER | OXTTFF 0x7800
4096 0x0000 - 0x7000 -
0 O | words | 32 | oxeFFF OCFER OXBFFF 0x7000
Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 136.

Table 141. Read-While-Write Limit, ATmega640

Section" Pages Address
Read-While-Write section (RWW) 224 0x0000 - Ox6FFF
No Read-While-Write section (NRWW) 32 0x7000 - Ox7FFF

Note: 1.

For details about these two section, see “NRWW — No Read-While-Write Section” on

page 324 and “RWW — Read-While-Write Section” on page 324.

Table 142. Explanation of different variables used in Figure 137 and the mapping to the
Z-pointer, ATmega640

Variable

Corresponding

Z-value®

Description(")

PCMSB

14

Most significant bit in the Program

Counter. (The Program Counter is 15 bits

PC[14:0])
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Table 142. Explanation of different variables used in Figure 137 and the mapping to the
Z-pointer, ATmega640

Corresponding

Variable Z-value® Description(")

PAGEMSB 6 Most significant bit which is used to
address the words within one page (128
words in a page requires seven bits PC
[6:0]).

ZPCMSB Z15 Bit in Z-pointer that is mapped to PCMSB.
Because Z0 is not used, the ZPCMSB
equals PCMSB + 1.

ZPAGEMS z7 Bit in Z-pointer that is mapped to PCMSB.

B Because Z0 is not used, the ZPAGEMSB
equals PAGEMSB + 1.

PCPAGE PC[14:7] Z15:78 Program Counter page address: Page
select, for Page Erase and Page Write

PCWORD PCI[6:0] Z7:21 Program Counter word address: Word
select, for filling temporary buffer (must be
zero during Page Write operation)

Notes: 1. ZO0: should be zero for all SPM commands, byte select for the (E)LPM instruction.

2. See “Addressing the Flash During Self-Programming” on page 328 for details about

the use of Z-pointer during Self-Programming.

In Table 143 through Table 144, the parameters used in the description of the Self-Pro-
gramming are given.

Table 143. Boot Size Configuration, ATmega1280/1281("

[7/]
[
£ 3
c ] =4
9 T o
5 s 5 & b <4
- (=} o =0 S o 2 85
2 2 o i 83 s, 882
o 8 I g =5 =5 <2 o
o o 8 4 g 3 & 2 8 S8
@ @ @ & I 8= 3 S5
512 0x0000- | OXFEOO -
1 1| s | 4 | oxFDEE | OXFFFE | OXFDFF | OXFE0O
1024 0x0000- | OXFCOO -
1 O | words | & | oxFBEF | OxFFEF OXFBFF | OXFCOO
2048 0x0000- | OXF800 -
0 T | words | 18 | oxF7FF OEFRE | OXFTFF OXF800
4096 0x0000- | OXF00O -
0 0 | vode 32 | OEFFE | oxrrrr | OXEFFF | 0xF00O
Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 136.
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Table 144. Read-While-Write Limit, ATmega1280/1281

Section!" Pages Address
Read-While-Write section (RWW) 480 0x0000 - OXEFFF
No Read-While-Write section (NRWW) 32 0xFO000 - OxFFFF

Note: 1. For details about these two section, see “NRWW — No Read-While-Write Section” on
page 324 and “RWW — Read-While-Write Section” on page 324.

Table 145. Explanation of different variables used in Figure 137 and the mapping to the
Z-pointer, ATmega1280/1281

Corresponding

Variable Z-value® Description("

PCMSB 15 Most significant bit in the Program Counter.
(The Program Counter is 16 bits PC[15:0])

PAGEMSB 6 Most significant bit which is used to address the

words within one page (128 words in a page
requires seven bits PC [6:0]).

ZPCMSB z16® Bit in Z-pointer that is mapped to PCMSB.
Because Z0 is not used, the ZPCMSB equals
PCMSB + 1.

ZPAGEMSB z7 Bit in Z-pointer that is mapped to PCMSB.

Because Z0 is not used, the ZPAGEMSB
equals PAGEMSB + 1.

PCPAGE PC[15:7] Z16®):z8 Program Counter page address: Page select,
for Page Erase and Page Write
PCWORD PCI[6:0] Z7:.Z1 Program Counter word address: Word select,

for filling temporary buffer (must be zero during

Page Write operation)

Notes: 1. Z0: should be zero for all SPM commands, byte select for the (E)LPM instruction.
2. See “Addressing the Flash During Self-Programming” on page 328 for details about
the use of Z-pointer during Self-Programming.
3. The Z-register is only 16 bits wide. Bit 16 is located in the RAMPZ register in the I/O
map.
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In Table 146 through Table 148, the parameters used in the description of the Self-Pro-
gramming are given.

Table 146. Boot Size Configuration, ATmega2560/2561("
[7/]
[7 -
e 8
= T
i) T o
c 5 56 ® <
N N N ® 0 o 3 =3 [] =
e g o g g2 J2 %5 £CB
o o 3 4 o S & 28 3= 8
m m m o < L. m w o o0
512 0x00000 - | OX1FEQO -
1 1 words 4 | oxtFDFF | ox1FFre | OXTFDFF | OX1FEQO
1024 0x00000 - | Ox1FCO0 -
1 0 words 8 | oxtFBFF | oxtFFFF | OXTFBFF | Ox1FC00
2048 0x00000 - | Ox1F800 -
0 1 words | '® | oxtF7FE | oxtFFrr | XIF7FF | Ox1F800
4096 0x00000 - | Ox1F000 -
0 0 words | 22 | ox1EFFF | ox1FFFF | OX1EFFF | 0x1F000
Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 136.

Table 147. Read-While-Write Limit, ATmega2560/2561

Section" Pages Address
Read-While-Write section (RWW) 992 0x00000 - Ox1EFFF
No Read-While-Write section (NRWW) 32 0x1FO000 - Ox1FFFF

Note: 1.

page 324 and “RWW — Read-While-Write Section” on page 324.
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Table 148. Explanation of different variables used in Figure 137 and the mapping to the
Z-pointer, ATmega2560/2561

Corresponding

Variable Z-value® Description(")

PCMSB 16 Most significant bit in the Program Counter.
(The Program Counter is 17 bits PC[16:0])

PAGEMSB 6 Most significant bit which is used to address the

words within one page (128 words in a page
requires seven bits PC [6:0]).

ZPCMSB Z17:216® Bit in Z-pointer that is mapped to PCMSB.
Because Z0 is not used, the ZPCMSB equals
PCMSB + 1.

ZPAGEMSB z7 Bit in Z-pointer that is mapped to PCMSB.

Because Z0 is not used, the ZPAGEMSB
equals PAGEMSB + 1.

PCPAGE PC[16:7] 717078 Program Counter page address: Page select,
for Page Erase and Page Write
PCWORD PCI[6:0] Z7:21 Program Counter word address: Word select,

for filling temporary buffer (must be zero during

Page Write operation)

Notes: 1. Z0: should be zero for all SPM commands, byte select for the (E)LPM instruction.
2. See “Addressing the Flash During Self-Programming” on page 328 for details about
the use of Z-pointer during Self-Programming.
3. The Z-register is only 16 bits wide. Bit 16 is located in the RAMPZ register in the I/O
map.
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The Store Program Memory Control and Status Register contains the control bits
needed to control the Boot Loader operations.

Bit 7 6 5 4 3 2 1 0
0x37 (0x57) | SPMIE | RWWSB | SIGRD | RWWSRE | BLBSET | PGWRT | PGERS | SPMEN | SPMCSR
Read/Write R/W R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the
SPM ready interrupt will be enabled. The SPM ready Interrupt will be executed as long
as the SPMEN bit in the SPMCSR Register is cleared.

e Bit 6 - RWWSB: Read-While-Write Section Busy

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is
initiated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the
RWW section cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit
is written to one after a Self-Programming operation is completed. Alternatively the
RWWSB bit will automatically be cleared if a page load operation is initiated.

* Bit 5 — SIGRD: Signature Row Read

If this bit is written to one at the same time as SPMEN, the next LPM instruction within
three clock cycles will read a byte from the signature row into the destination register.
see “Reading the Signature Row from Software” on page 331 for details. An SPM
instruction within four cycles after SIGRD and SPMEN are set will have no effect. This
operation is reserved for future use and should not be used.

¢ Bit 4 - RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section
is blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW
section, the user software must wait until the programming is completed (SPMEN will be
cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN, the
next SPM instruction within four clock cycles re-enables the RWW section. The RWW
section cannot be re-enabled while the Flash is busy with a Page Erase or a Page Write
(SPMEN is set). If the RWWSRE bit is written while the Flash is being loaded, the Flash
load operation will abort and the data loaded will be lost.

e Bit 3 - BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles sets Boot Lock bits, according to the data in RO. The data in R1 and
the address in the Z-pointer are ignored. The BLBSET bit will automatically be cleared
upon completion of the Lock bit set, or if no SPM instruction is executed within four clock
cycles.

An (E)LPM instruction within three cycles after BLBSET and SPMEN are set in the
SPMCSR Register, will read either the Lock bits or the Fuse bits (depending on Z0 in
the Z-pointer) into the destination register. See “Reading the Fuse and Lock Bits from
Software” on page 331 for details.

a0 ATmega640/1280/1281/2560/2561 m————
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* Bit 2 - PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Write, with the data stored in the temporary buffer. The
page address is taken from the high part of the Z-pointer. The data in R1 and RO are
ignored. The PGWRT bit will auto-clear upon completion of a Page Write, or if no SPM
instruction is executed within four clock cycles. The CPU is halted during the entire
Page Write operation if the NRWW section is addressed.

* Bit 1 - PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Erase. The page address is taken from the high part of
the Z-pointer. The data in R1 and RO are ignored. The PGERS bit will auto-clear upon
completion of a Page Erase, or if no SPM instruction is executed within four clock
cycles. The CPU is halted during the entire Page Write operation if the NRWW section is
addressed.

* Bit 0 — SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one
together with either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM
instruction will have a special meaning, see description above. If only SPMEN is written,
the following SPM instruction will store the value in R1:R0 in the temporary page buffer
addressed by the Z-pointer. The LSB of the Z-pointer is ignored. The SPMEN bit will
auto-clear upon completion of an SPM instruction, or if no SPM instruction is executed
within four clock cycles. During Page Erase and Page Write, the SPMEN bit remains
high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the
lower five bits will have no effect.

Note:  Only one SPM instruction should be active at any time.
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Memory

Programming

Program And Data The ATmega640/1280/1281/2560/2561 provides six Lock bits which can be left unpro-
Memory Lock Bits grammed (“1”) or can be programmed (“0”) to obtain the additional features listed in

Table 150. The Lock bits can only be erased to “1” with the Chip Erase command.

Table 149. Lock Bit Byte(")

Lock Bit Byte Bit No | Description Default Value

7 - 1 (unprogrammed)

6 - 1 (unprogrammed)
BLB12 5 Boot Lock bit 1 (unprogrammed)
BLB11 4 Boot Lock bit 1 (unprogrammed)
BLB02 3 Boot Lock bit 1 (unprogrammed)
BLBO1 2 Boot Lock bit 1 (unprogrammed)
LB2 1 Lock bit 1 (unprogrammed)
LB1 0 Lock bit 1 (unprogrammed)

Note: 1. “1” means unprogrammed, “0” means programmed

Table 150. Lock Bit Protection Modes!"®

Memory Lock Bits

Protection Type

LB Mode

LB2

LB1

1

1

1

No memory lock features enabled.

Further programming of the Flash and EEPROM is
disabled in Parallel and Serial Programming mode. The
Fuse bits are locked in both Serial and Parallel
Programming mode.(")

Further programming and verification of the Flash and
EEPROM is disabled in Parallel and Serial Programming
mode. The Boot Lock bits and Fuse bits are locked in both
Serial and Parallel Programming mode.(")

BLBO Mode

BLB02

BLBO1

1

No restrictions for SPM or (E)LPM accessing the
Application section.

2

SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and
(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

a2 ATmega640/1280/1281/2560/2561 m————
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Table 150. Lock Bit Protection Modes!"® (Continued)

Memory Lock Bits Protection Type
BLB1 Mode | BLB12 | BLB11

No restrictions for SPM or (E)LPM accessing the Boot

1 1 1 Loader section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section,
and (E)LPM executing from the Application section is not
3 0 0 allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

(E)LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

Fuse Bits The ATmega640/1280/1281/2560/2561 has three Fuse bytes. Table 151 - Table 153
describe briefly the functionality of all the fuses and how they are mapped into the Fuse
bytes. Note that the fuses are read as logical zero, “0”, if they are programmed.

Table 151. Extended Fuse Byte

Fuse Low Byte Bit No | Description Default Value
- 7 - 1
- 6 - 1
- 5 - 1
- 4 - 1
- 3 - 1
BODLEVEL2(" 2 Brown-out Detector trigger level 1 (unprogrammed)
BODLEVEL1(®" 1 Brown-out Detector trigger level 1 (unprogrammed)
BODLEVELO®" 0 Brown-out Detector trigger level 1 (unprogrammed)

Note: 1. See Table 27 on page 60 for BODLEVEL Fuse decoding.
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Table 152. Fuse High Byte
Fuse High Byte | Bit No | Description Default Value
1 (unprogrammed, OCD
4)
OCDEN 7| Enable OCD disabled)
0 (programmed, JTAG
JTAGEN 6 Enable JTAG enabled)
) Enable Serial Program and Data | O (programmed, SPI prog.
SPIEN 5 i
Downloading enabled)
WDTON®) 4 Watchdog Timer always on 1 (unprogrammed)
EESAVE 3 EEPROM memory is preserved 1 (unprogrammed,
through the Chip Erase EEPROM not preserved)
Select Boot Size (see Table 157
BOOTSZ1 2 for details) 0 (programmed)®
Select Boot Size (see Table 157
BOOTSZ0 1 for details) 0 (programmed)®
BOOTRST 0 Select Reset Vector 1 (unprogrammed)
Note: 1. The SPIEN Fuse is not accessible in serial programming mode.
2. The default value of BOOTSZ1:0 results in maximum Boot Size. See Table 140 on
page 335 for details.
3. See “WDTCSR — Watchdog Timer Control Register” on page 66 for details.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of
Lock bits and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the
clock system to be running in all sleep modes. This may increase the power
consumption.
Table 153. Fuse Low Byte
Fuse Low Byte Bit No Description Default Value
CKDIV8®¥ 7 Divide clock by 8 0 (programmed)
CKOUT® 6 Clock output 1 (unprogrammed)
SUTH1 5 Select start-up time 1 (unprogrammed)(")
SUTO 4 Select start-up time 0 (programmed)"
CKSEL3 3 Select Clock source 0 (programmed)®
CKSEL2 2 Select Clock source 0 (programmed)®
CKSEL1 1 Select Clock source 1 (unprogrammed)®
CKSELO 0 Select Clock source 0 (programmed)®
Note: 1. The default value of SUT1:0 results in maximum start-up time for the default clock
source. See Table 26 on page 58 for details.
2. The default setting of CKSELS3:0 results in internal RC Oscillator @ 8 MHz. See
Table 10 on page 39 for details.
3. The CKOUT Fuse allow the system clock to be output on PORTE7. See “Clock Out-
put Buffer” on page 46 for details.
4. See “System Clock Prescaler” on page 47 for details.
The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are

locked if Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the

Lock bits.

a4 ATmega640/1280/1281/2560/256 1 m————
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Latching of Fuses

Signature Bytes

Calibration Byte

Page Size

The fuse values are latched when the device enters programming mode and changes of
the fuse values will have no effect until the part leaves Programming mode. This does
not apply to the EESAVE Fuse which will take effect once it is programmed. The fuses
are also latched on Power-up in Normal mode.

All Atmel microcontrollers have a three-byte signature code which identifies the device.
This code can be read in both serial and parallel mode, also when the device is locked.
The three bytes reside in a separate address space. For the
ATmega640/1280/1281/2560/2561 the signature bytes are given in Table 154.

Table 154. Device and JTAG ID

Signature Bytes Address JTAG
Part 0x000 0x001 0x002 Part Number Manufacture ID
ATmega640 Ox1E 0x96 0x08 9608 Ox1F
ATmega1280 Ox1E 0x97 0x03 9703 Ox1F
ATmega1281 Ox1E 0x97 0x04 9704 Ox1F
ATmega2560 Ox1E 0x98 0x01 9801 Ox1F
ATmega2561 Ox1E 0x98 0x02 9802 Ox1F

The ATmega640/1280/1281/2560/2561 has a byte calibration value for the internal RC
Oscillator. This byte resides in the high byte of address 0x000 in the signature address
space. During reset, this byte is automatically written into the OSCCAL Register to
ensure correct frequency of the calibrated RC Oscillator.

Table 155. No. of Words in a Page and No. of Pages in the Flash

No. of
Flash Size Page Size | PCWORD Pages PCPAGE PCMSB
128K words (256K bytes) | 128 words PC[6:0] 1024 PC[16:7] 16

Table 156. No. of Words in a Page and No. of Pages in the EEPROM

No. of
EEPROM Size Page Size | PCWORD Pages PCPAGE EEAMSB
4K bytes 8 bytes EEA[2:0] 512 EEA[11:3] 11

Parallel Programming Parameters, Pin Mapping, and Commands

Signal Names

2549K-AVR-01/07

This section describes how to parallel program and verify Flash Program memory,
EEPROM Data memory, Memory Lock bits, and Fuse bits in the
ATmega640/1280/1281/2560/2561. Pulses are assumed to be at least 250 ns unless
otherwise noted.

In this section, some pins of the ATmega640/1280/1281/2560/2561 are referenced by
signal names describing their functionality during parallel programming, see Figure 138
and Table 157. Pins not described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a posi-
tive pulse. The bit coding is shown in Table 160.
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When pulsing WR or OE, the command loaded determines the action executed. The dif-
ferent commands are shown in Table 161.

Figure 138. Parallel Programming")

Note: 1.

RDY/BSY €+—

PAGEL ——>»

L —

+5V

OE —>
WR ———>]
BS1 ———>»]
XAQ ———>»

XA1T ———>

+12V —— >

BS2 ———»|

PD1

PD2

PD3

PD4

PD5

PD6

PD7

RESET
PAO
XTAL1

GND

VCC
+5V

AVCC

PB7 - PBO [«——> DATA

L

Table 157. Pin Name Mapping

Unused Pins should be left floating.

Signal Name in
Programming Mode | Pin Name | I/O | Function
YESY | eot o O Devcelsbusy poganming, 1 Devce s

OE PD2 | | Output Enable (Active low).
WR PD3 I | Write Pulse (Active low).
BS1 PD4 | Byte Select 1.
XAO0 PD5 I XTAL Action Bit 0
XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 | Program Memory and EEPROM data Page Load.
BS2 PAO | Byte Select 2.
DATA PB7-0 I/O | Bi-directional Data bus (Output when OE is low).

Table 158. BS2 and BS1 Encoding

Flash / Flash Data

EEPROM Loading / Fuse Reading Fuse
BS2 BS1 Address Reading Programming and Lock Bits
0 0 Low Byte Low Byte Low Byte Fuse Low Byte

ATmega640/1280/1281/2560/2561 m———
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Table 158. BS2 and BS1 Encoding

| ATmega640/1 280/1281/2560/2561

Flash / Flash Data
EEPROM Loading / Fuse Reading Fuse
BS2 BS1 Address Reading Programming and Lock Bits
0 1 High Byte High Byte High Byte Lockbits
1 0 Extended High Reserved Extended Byte Extended Fuse
Byte Byte
1 1 Reserved Reserved Reserved Fuse High Byte

Table 159. Pin Values Used to Enter Programming Mode

Pin Symbol Value
PAGEL Prog_enable[3] 0
XA1 Prog_enable[2] 0
XAO0 Prog_enable[1] 0
BS1 Prog_enable[0] 0

Table 160. XA1 and XAO Enoding

XA1 XA0 Action when XTAL1 is Pulsed
0 0 Load Flash or EEPROM Address (High or low address byte
determined by BS2 and BS1).
0 1 Load Data (High or Low data byte for Flash determined by BS1).
1 0 Load Command
1 1 No Action, Idle

Table 161. Command Byte Bit Encoding

Command Byte

Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte
0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

ATMEL
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Parallel Programming

Enter Programming Mode

Considerations for Efficient
Programming

Chip Erase

Programming the Flash

ATMEL

The following algorithm puts the device in parallel programming mode:
1. Apply 4.5 - 5.5V between V and GND.
2. Set RESET to “0” and toggle XTAL1 at least six times.

3. Set the Prog_enable pins listed in Table 159 on page 347 to “0000” and wait at
least 100 ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns
after +12V has been applied to RESET, will cause the device to fail entering pro-
gramming mode.

5. Wait at least 50 ps before sending a new command.

The loaded command and address are retained in the device during programming. For
efficient programming, the following should be considered.

e The command needs only be loaded once when writing or reading multiple memory
locations.

e Skip writing the data value OxFF, that is the contents of the entire EEPROM (unless
the EESAVE Fuse is programmed) and Flash after a Chip Erase.

e Address high byte needs only be loaded before programming or reading a new 256
word window in Flash or 256 byte EEPROM. This consideration also applies to
Signature bytes reading.

The Chip Erase will erase the Flash and EEPROM(") memories plus Lock bits. The Lock
bits are not reset until the program memory has been completely erased. The Fuse bits
are not changed. A Chip Erase must be performed before the Flash and/or EEPROM
are reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is
programmed.

Load Command “Chip Erase”

Set XA1, XAO to “10”. This enables command loading.

Set BS1 to “0”.

Set DATA to “1000 0000”. This is the command for Chip Erase.

Give XTAL1 a positive pulse. This loads the command.

Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
Wait until RDY/BSY goes high before loading a new command.

ook wh =

The Flash is organized in pages, see Table 155 on page 345. When programming the
Flash, the program data is latched into a page buffer. This allows one page of program
data to be programmed simultaneously. The following procedure describes how to pro-
gram the entire Flash memory:

A. Load Command “Write Flash”

1. Set XA1, XAO to “10”. This enables command loading.

2. SetBS1to“0".

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B

. Load Address Low byte (Address bits 7:0)

s ATmega640/1280/1281/2560/2561 m————
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Set XA1, XAO to “00”. This enables address loading.

Set BS2, BS1 to “00”. This selects the address low byte.

Set DATA = Address low byte (0x00 - OxFF).

Give XTAL1 a positive pulse. This loads the address low byte.

y
2

3

4

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - OxFF).

3. Give XTALT1 a positive pulse. This loads the data byte.
D

1

2

3

4

E

1

2

. Load Data High Byte
Set BS1 to “1”. This selects high data byte.
Set XA1, XAO to “01”. This enables data loading.
Set DATA = Data high byte (0x00 - OxFF).
Give XTAL1 a positive pulse. This loads the data byte.

. Latch Data
Set BS1 to “1”. This selects high data byte.
Give PAGEL a positive pulse. This latches the data bytes. (See Figure 140 for
signal waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is
loaded.

While the lower bits in the address are mapped to words within the page, the higher bits
address the pages within the FLASH. This is illustrated in Figure 139 on page 350. Note
that if less than eight bits are required to address words in the page (pagesize < 256),
the most significant bit(s) in the address low byte are used to address the page when
performing a Page Write.

G. Load Address High byte (Address bits15:8)

1. Set XA1, XAO to “00”. This enables address loading.

2. SetBS2, BS1 to “01”. This selects the address high byte.

3. Set DATA = Address high byte (0x00 - OxFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Load Address Extended High byte (Address bits 23:16)

1. Set XA1, XAO to “00”. This enables address loading.

Set BS2, BS1 to “10”. This selects the address extended high byte.
Set DATA = Address extended high byte (0x00 - OxFF).

Give XTALT1 a positive pulse. This loads the address high byte.

oD

I. Program Page
1. Set BS2, BS1 to “00”

2. Give WR a negative pulse. This starts programming of the entire page of data.
RDY/BSY goes low.

3. Wait until RDY/BSY goes high (See Figure 140 for signal waveforms).

J. Repeat B through I until the entire Flash is programmed or until all data has been
programmed.

K. End Page Programming
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1. 1. Set XA1, XAO to “10”. This enables command loading.
2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write sig-
nals are reset.

Figure 139. Addressing the Flash Which is Organized in Pages!"

PCMSB PAGEMSB
PROGRAM
A PCPAGE | PCWORD |
PAGE ADDRESS WORD ADDRESS
WITHIN THE FLASH WITHIN A PAGE
PROGRAM MEMORY PAGE PCWORD[PAGEMSB:0]:
PAGE N I INSTRUCTION WORD 00
\
. 01
\
\ 02
\
¢ \ >

\ PAGEEND

Note: 1. PCPAGE and PCWORD are listed in Table 155 on page 345.
Figure 140. Programming the Flash Waveforms("
F
—
A B C D E B Cc D E G H I
DATA :X 0«10 X(ApDR. Low X DaTALOW X DATAHIGH ADDR. LOWX DATALOW XDATAHIGH X xx X ADDR. HIGHYADDR. EXT.HX XX
XA1 / \
wo ] / \
BS1 / | V— \
BS2 / \
R \/
RDY/BSY -/
PAGEL /_\ /_\
Note: 1. “XX”is don’t care. The letters refer to the programming description above.

Programming the EEPROM The EEPROM is organized in pages, see Table 156 on page 345. When programming

the EEPROM, the program data is latched into a page buffer. This allows one page of
data to be programmed simultaneously. The programming algorithm for the EEPROM
data memory is as follows (refer to “Programming the Flash” on page 348 for details on
Command, Address and Data loading):

350
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A: Load Command “0001 0001”.

G: Load Address High Byte (0x00 - OxFF).
B: Load Address Low Byte (0x00 - OxFF).
C: Load Data (0x00 - OxFF).

5. E: Latch data (give PAGEL a positive pulse).

O Dbd -

K: Repeat 3 through 5 until the entire buffer is filled.
L: Program EEPROM page
1. SetBS2, BS1 to “00”.

2. Give WR a negative pulse. This starts programming of the EEPROM page.
RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure
141 for signal waveforms).

Figure 141. Programming the EEPROM Waveforms

K

/_H
A G B C E B C E L
oata___X_oxt1__Ywoon.ricr X abor Low)_oara__Y_xx__ X Abor Low)__oam X %X
w —/ \
xA0 /S _/ N\
st /N
WA __/
ROV/BSY ./
RESET +12V
OE
PAGEL /\ / N\
Bs2
Reading the Flash The algorithm for reading the Flash memory is as follows (refer to “Programming the

Flash” on page 348 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

H: Load Address Extended Byte (0x00- OxFF).

G: Load Address High Byte (0x00 - OxFF).

B: Load Address Low Byte (0x00 - OxFF).

Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.
Set BS to “1”. The Flash word high byte can now be read at DATA.

Set OE to “1”.

N O ~OD

Reading the EEPROM The algorithm for reading the EEPROM memory is as follows (refer to “Programming the
Flash” on page 348 for details on Command and Address loading):

1. A: Load Command “0000 0011”.
2. G: Load Address High Byte (0x00 - OxFF).
3. B: Load Address Low Byte (0x00 - OxFF).

A IIIEI% 351
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Programming the Fuse Low
Bits

Programming the Fuse High
Bits

Programming the Extended
Fuse Bits

ATMEL

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at
DATA.

5. Set OE to “1”.

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming
the Flash” on page 348 for details on Command and Data loading):

1. A: Load Command “0100 0000".
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Give WR a negative pulse and wait for RDY/BSY to go high.

The algorithm for programming the Fuse High bits is as follows (refer to “Programming
the Flash” on page 348 for details on Command and Data loading):

1. A: Load Command “0100 0000".

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. SetBS2, BS1 to “01”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS2, BS1 to “00”. This selects low data byte.

The algorithm for programming the Extended Fuse bits is as follows (refer to “Program-
ming the Flash” on page 348 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse
bit.

3. 3.SetBS2, BS1to “10”. This selects extended data byte.
4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. 5. Set BS2, BS1 to “00”. This selects low data byte.

Figure 142. Programming the FUSES Waveforms

Write Fuse Low byte Write Fuse high byte Write Extended Fuse byte

A c /—M A c K—M A c K—M
oata _K__oao X oam Y xx X oo X o X xx X oo X o Y xx
Bt /A
Bs2 /L
s /N /AR /AR
WA \/ \/ \/
ROVESY -/ -/ -/

RESET +12V

OE

PAGEL
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Programming the Lock Bits The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 348 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is pro-
grammed (LB1 and LB2 is programmed), it is not possible to program the Boot
Lock bits by any External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and Lock The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming
Bits the Flash” on page 348 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, and BS2, BS1 to “00”. The status of the Fuse Low bits can now be
read at DATA (“0” means programmed).

3. SetOE to “0”, and BS2, BS1 to “11”. The status of the Fuse High bits can now be
read at DATA (“0” means programmed).

4. Set OE to “0”, and BS2, BS1 to “10”. The status of the Extended Fuse bits can
now be read at DATA (“0” means programmed).

5. Set OE to “0”, and BS2, BS1 to “01”. The status of the Lock bits can now be read
at DATA (“0” means programmed).

6. Set OE to “1”.

Figure 143. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

I Fuse Low Byte H 0

I Extended Fuse Byte

DATA
BS2 —>

I Lock Bits 0

1

I Fuse High Byte 1 BL‘I_/

BS2

Reading the Signature Bytes  The algorithm for reading the Signature bytes is as follows (refer to “Programming the
Flash” on page 348 for details on Command and Address loading):

1. A: Load Command “0000 1000”.
2. B:Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at
DATA.

4. Set OE to “1”.

A mElg 353

2549K-AVR-01/07



ATMEL

Reading the Calibration Byte  The algorithm for reading the Calibration byte is as follows (refer to “Programming the
Flash” on page 348 for details on Command and Address loading):

1. A: Load Command “0000 1000".
B: Load Address Low Byte, 0x00.

2
3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.
4

Set OE to “1”.
Parallel Programming Figure 144. Parallel Programming Timing, Including some General Timing
Characteristics Requirements
ExLwiL
XTAL1 Ixhxcy N
tovxH txLDx
Data & Contol ——
(DATA, XA0/1, BS1, BS2) >
tsvPH tpLex | tBvwi L
PAGEL tpHpL .-
twiwh
WR teLwL ~———
WLRL
- . S—
RDY/BSY L
twirH

Figure 145. Parallel Programming Timing, Loading Sequence with Timing
Requirements("

LOAD ADDRESS LOAD DATA LOAD DATA LOAD DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
/_H r N s N N s N

t txLPH
XLXH

tpLxH
XTAL1 e AN e ‘|\ /I’ F /I/l

BS1

PAGEL / N

DATA X ADDRO (Low Byte) >< DATA (Low Byte) >< DATA (High Byte) >< ADDR1 (Low Byte)

XA0

XA1

Note: 1. The timing requirements shown in Figure 144 (i.e., tpyxn, txHxe, and ty px) also apply
to loading operation.
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Figure 146. Parallel Programming Timing, Reading Sequence (within the Same Page)
with Timing Requirements(")

LOAD ADDRESS READ DATA READ DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
— —

txioL

-
XTAL1

BS1

tsvpv
—

toLpv
—

tonpz

-
DATA —< ADDRO (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)

XAO

XA1

Note: 1. The timing requirements shown in Figure 144 (i.e., tpyxn, txHxe, and ty px) also apply
to reading operation.

Table 162. Parallel Programming Characteristics, Voc = 5V + 10%

Symbol Parameter Min | Typ | Max | Units
Vpp Programming Enable Voltage 11.5 12.5 \
lpp Programming Enable Current 250 pA
tovxH Data and Control Valid before XTAL1 High 67 ns
tyixH XTAL1 Low to XTAL1 High 200 ns
tymxe XTAL1 Pulse Width High 150 ns
tx DX Data and Control Hold after XTAL1 Low 67 ns
tyowl XTAL1 Low to WR Low 0 ns
txLPH XTAL1 Low to PAGEL high 0 ns
tpLxH PAGEL low to XTAL1 high 150 ns
tavpH BS1 Valid before PAGEL High 67 ns
tppL PAGEL Pulse Width High 150 ns
tpLBX BS1 Hold after PAGEL Low 67 ns
twiex BS2/1 Hold after WR Low 67 ns
terwL PAGEL Low to WR Low 67 ns
tavwL BS2/1 Valid to WR Low 67 ns
twiwH WR Pulse Width Low 150 ns
twiRL WR Low to RDY/BSY Low 0 1 us
twiRH WR Low to RDY/BSY High(") 3.7 4.5 ms
twirn ce | WR Low to RDY/BSY High for Chip Erase® 7.5 9 ms
twi oL XTAL1 Low to OE Low 0 ns
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Serial Programming Pin
Mapping

ATMEL

Table 162. Parallel Programming Characteristics, Vo = 5V + 10% (Continued)

Symbol Parameter Min | Typ | Max | Units
tevov BS1 Valid to DATA valid 0 250 ns
toLov OE Low to DATA Valid 250 ns
tonnz OE High to DATA Tri-stated 250 ns

Notes: 1. ty gy is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock
bits commands.
2. twipH_ceis valid for the Chip Erase command.

Both the Flash and EEPROM memory arrays can be programmed using a serial pro-
gramming bus while RESET is pulled to GND. The serial programming interface
consists of pins SCK, PDI (input) and PDO (output). After RESET is set low, the Pro-
gramming Enable instruction needs to be executed first before program/erase
operations can be executed. NOTE, in Table 163 on page 356, the pin mapping for
serial programming is listed. Not all packages use the SPI pins dedicated for the internal
Serial Peripheral Interface - SPI.

Table 163. Pin Mapping Serial Programming

Pins Pins
Symbol (TQFP-100) (TQFP-64) /0 Description
PDI PB2 PEO | Serial Data in
PDO PB3 PE1 o Serial Data out
SCK PB1 PB1 | Serial Clock

Figure 147. Serial Programming and Verify(")

+1.8 - 5.5V

vce
+1.8-55V@

PDI ———>
AVCC

PDO «——

SCK ———>»|

—— > XTAL1

— >»| RESET

I —

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock
source to the XTAL1 pin.
2. Ve - 0.3V < AVCC < V¢ + 0.3V, however, AVCC should always be within 1.8 - 5.5V
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When programming the EEPROM, an auto-erase cycle is built into the self-timed pro-
gramming operation (in the Serial mode ONLY) and there is no need to first execute the
Chip Erase instruction. The Chip Erase operation turns the content of every memory
location in both the Program and EEPROM arrays into OxFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high
periods for the serial clock (SCK) input are defined as follows:

Low:> 2 CPU clock cycles for f, < 12 MHz, 3 CPU clock cycles for fy >= 12 MHz
High:> 2 CPU clock cycles for f, < 12 MHz, 3 CPU clock cycles for f, >= 12 MHz

When writing serial data to the ATmega640/1280/1281/2560/2561, data is clocked on
the rising edge of SCK.

When reading data from the ATmega640/1280/1281/2560/2561, data is clocked on the
falling edge of SCK. See Figure 149 for timing details.

To program and verify the ATmega640/1280/1281/2560/2561 in the serial programming
mode, the following sequence is recommended (See four byte instruction formats in
Table 165 on page 359):

1. Power-up sequence:
Apply power between V- and GND while RESET and SCK are set to “0”. In
some systems, the programmer can not guarantee that SCK is held low during
power-up. In this case, RESET must be given a positive pulse of at least two
CPU clock cycles duration after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Program-
ming Enable serial instruction to pin PDI.

3. The serial programming instructions will not work if the communication is out of
synchronization. When in sync. the second byte (0x53), will echo back when
issuing the third byte of the Programming Enable instruction. Whether the echo
is correct or not, all four bytes of the instruction must be transmitted. If the 0x53
did not echo back, give RESET a positive pulse and issue a new Programming
Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one
byte at a time by supplying the 7 LSB of the address and data together with the
Load Program Memory Page instruction. To ensure correct loading of the page,
the data low byte must be loaded before data high byte is applied for a given
address. The Program Memory Page is stored by loading the Write Program
Memory Page instruction with the address lines 15:8. Before issuing this com-
mand, make sure the instruction Load Extended Address Byte has been used to
define the MSB of the address. The extended address byte is stored until the
command is re-issued, i.e., the command needs only be issued for the first page,
and when crossing the 64KWord boundary. If polling (RDY/BSY) is not used, the
user must wait at least tyyp £ agy Pefore issuing the next page. (See Table 164.)
Accessing the serial programming interface before the Flash write operation
completes can result in incorrect programming.

5. The EEPROM array is programmed one byte at a time by supplying the address
and data together with the appropriate Write instruction. An EEPROM memory
location is first automatically erased before new data is written. If polling is not
used, the user must wait at least typ geprom Defore issuing the next byte. (See
Table 164.) In a chip erased device, no OxFFs in the data file(s) need to be
programmed.

6. Any memory location can be verified by using the Read instruction which returns
the content at the selected address at serial output PDO. When reading the
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Flash memory, use the instruction Load Extended Address Byte to define the
upper address byte, which is not included in the Read Program Memory instruc-
tion. The extended address byte is stored until the command is re-issued, i.e.,
the command needs only be issued for the first page, and when crossing the
64KWord boundary.

7. At the end of the programming session, RESET can be set high to commence
normal operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn V¢ power off.

Table 164. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay
twp_FLasH 4.5 ms
twp_EePROM 9.0 ms
twp_ERASE 9.0 ms
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Serial Programming
Instruction set

Table 165 on page 359 and Figure 148 on page 360 describes the Instruction set.

Table 165. Serial Programming Instruction Set

Instruction Format

Instruction/Operation Byte 1 Byte 2 Byte 3 Byte4
Programming Enable $AC $53 $00 $00
Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00
Poll RDY/BSY $FO $00 $00 data byte out
Load Instructions
Load Extended Address byte(" $4D $00 Extended adr $00
Load Program Memory Page, High byte $48 $00 adr LSB high data byte in
Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in
Load EEPROM Memory Page (page access) $C1 $00 0000 000aa data byte in
Read Instructions
Read Program Memory, High byte $28 adr MSB adr LSB high data byte out
Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out
Read EEPROM Memory $A0 0000 aaaa aaaa aaaa data byte out
Read Lock bits $58 $00 $00 data byte out
Read Signature Byte $30 $00 0000 000aa data byte out
Read Fuse bits $50 $00 $00 data byte out
Read Fuse High bits $58 $08 $00 data byte out
Read Extended Fuse Bits $50 $08 $00 data byte out
Read Calibration Byte $38 $00 $00 data byte out
Write Instructions
Write Program Memory Page $4C adr MSB adr LSB $00
Write EEPROM 